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Abstract

This paper shows that across multiple generations, the persistence of occupational and educational attain-

ment in Germany is larger than estimates from two generations suggest. We consider two recent interpreta-

tions. First, we assess Gregory Clark’s hypotheses that the true rate of intergenerational persistence is higher

than the observed rate, as high as 0.75, and time-invariant. Our evidence supports the first but not the other

two hypotheses. Second, we test for independent effects of grandparents. We show that the coefficient on

grandparent status is positive in a wide class of Markovian models, and present evidence against its causal

interpretation.
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Economists and social scientists have long been interested in the persistence of social status across gen-

erations. However, most studies focus on just two consecutive generations, parents and their children (see

Solon, 1999; Black and Devereux, 2011, for literature reviews). Much less is known about the persistence of

status across multiple generations.1 Existing studies typically find that inequality is more persistent than estim-

ates from parent-child correlations suggest, but attribute this additional persistence to very different underlying

mechanisms. In this paper, we present direct evidence on the persistence of social status across up to four gen-

erations in 19th and 20th century Germany, and use our evidence to test recent theories of multigenerational

persistence.

Two distinct theories have gained particular attention. Clark (2014) and Clark and Cummins (2014) argue

that wealth, education or occupational status is transmitted via an underlying and unobserved latent factor. They

suggest that the persistence of this underlying factor is not only very high–much higher than the persistence in

observed outcomes between parents and children–but also steady across social systems and time. Mare (2011)

points to a very different interpretation of multigenerational correlations. He argues that the previous literature

suffers from a fundamental conceptual limitation in that it considers only the transmission between parents and

children. Following his call to overcome this “two-generation paradigm”, a fast-growing literature examines

the existence of independent causal effects from other family members, in particular grandparents.2

Both theories can potentially explain why inequality is more persistent than parent-child correlations sug-

gest. However, they point towards different underlying mechanisms. While Clark offers a provocative interpret-

ation of the traditional parent-child perspective, Mare and others want to move beyond it. The two theories also

have different policy implications: In Clark’s perspective, the rate of social mobility is unaffected by the envir-

onment and, thus, resistant to social policies. Cross-country variation in parent-child correlations, as discussed
1See Warren and Hauser (1997) for a short review of earlier studies on the persistence of inequality across multiple generations, such as

Hodge (1966). Among recent studies, Lindahl et al. (2015) exploit data from a survey of all pupils attending third grade in the Swedish city
of Malmö in 1938. The survey follows the index generation until retirement and also provides information on parents, spouses, children,
and grandchildren. The authors show that extrapolated estimates from two-generation studies considerably underestimate the persistence in
labour earnings and educational attainment across multiple generations. They also find that even after controlling for parents’ educational
attainment, grandparents’ education have an independent effect on the outcomes of grandchildren. Turning to occupational mobility, Long
and Ferrie (2013b) study British and US census data for 1850 to 1910. The data provides information on the occupations of grandfathers,
fathers, and sons. The authors find that in both Britain and the US, the occupation of grandfathers has an independent effect on the
occupation of their grandsons, and that the actual rate of social mobility is significantly lower than estimates based on two-generation
estimates suggest. Clark and Cummins (2014) analyse the transmission of wealth over five generations for people dying between 1858 and
2012 in England or Wales. Using rare surnames to track families, the authors find that the transmission of wealth is much more persistent
than standard estimates would suggest.

2Chan and Boliver (2013), for instance, draw on data from three British birth cohort studies to analyse the association between the social
class positions of grandparents and grandchildren in contemporary Britain. The authors find that even after controlling for parents’ social
position, grandparents’ have a substantial effect on the social class that their grandchildren reach. Modin et al. (2013) show that ninth
graders in contemporary Sweden are more likely to achieve top grades in Mathematics and Swedish if their grandparents also did well in
these subjects. The authors include controls for the education level of both parents and grandparents, and interpret their results as evidence
for a direct influence of grandparents on grandchildren. Hertel and Groh-Samberg (2013) use longitudinal survey data to analyse and
compare class mobility across three generations in Germany and the US. They find that in both countries, the social class of grandfathers is
directly associated with the social position of their grandchildren.
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by Corak (2013) and others, is then without long-run significance. In contrast, Mare highlights the importance

of context, arguing that the “correct” model of mobility may vary with historical and institutional factors.

We start our analysis by presenting novel evidence for Germany on the long-run persistence of occupational

status and educational attainment, using data from three retrospective surveys, the German Life History Study,

the Berlin Aging Study, and the National Educational Panel Study. The data sets contain measures of occu-

pational status for three and of educational attainment for up to four generations, and, compared to previous

studies, offer several advantages. First, four of our five samples are nationally representative. Second, we ob-

serve direct, non-imputed information on family links, education, and occupations for each generation. Finally,

we observe five distinct cohort groups, which were differently affected by events in the first half of the 20th

century, and in particular by World War I and II. The time dimension is especially interesting given Clark’s and

Mare’s contrasting arguments on the importance of environmental and institutional factors.

Our finding suggests that the comparatively high intergenerational dependency of educational attainment in

Germany (see, e.g., Shavit and Blossfeld, 1993, and Heineck and Riphahn, 2009) extends beyond two genera-

tions: our average estimate across three generations is 0.35 for regression and 0.25 for correlation coefficients,

between 20% and 40% higher than comparable estimates for Sweden (Lindahl et al., 2015). The correlation

in occupational prestige is slightly lower than in education across two, but of similar magnitude across three

generations.

We test if the iteration of parent-child measures provides a good approximation for status inequality across

multiple generations. This question is important, because such iterations have been used, and because they

imply that status differences tend to disappear quickly–leading to strong hypotheses about the persistence of

inequality. For instance, Becker and Tomes (1986) conclude in their influential work on the economics of the

family that “almost all earnings advantages and disadvantages of ancestors are wiped out in three generations.

Poverty would not [persist] for several generations.”3 However, we find that the persistence of inequality is

substantially higher than the iteration procedure suggests. The actual three-generation estimates in schooling

are about 40%, those in occupational prestige up to 70% higher than the predicted coefficients.

We then use our reduced-form evidence on multigenerational correlations to identify the parameters of the

latent factor model underlying Clark’s arguments, for each of our samples and outcomes. In contrast to Clark

(2014), who identifies the parameters by averaging outcomes within surname groups, our identification strategy

does not rely on the assumption that group members share no characteristics, other than the latent factor, that

affect their status. The heritability of the latent factor averages around 0.60 across our samples, and is sub-
3The quote relates to their interpretation of parent-child coefficients from the empirical literature, but their model can explain departures

from such pattern.
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stantially larger than the observed parent-child correlations in status. This finding supports Clark’s hypothesis

that the transmission process is characterised by a higher degree of persistence than standard intergenerational

estimates suggest. However, persistence is not as high as his estimates from surname groups, which cluster

around 0.75, imply, and we do find statistically significant differences in its level across time. This finding

suggests that the long-run potential of families does respond to the economic and institutional environment.

Next, we test whether the hypothesis that grandparents have an independent causal effect on their grandchil-

dren can explain the observed pattern of multigenerational persistence. We first note an important link between

the strand of literature that studies long-run inequality, and the strand that assesses the role of grandparents:

any causal process that generates persistence over and above the rate implied by extrapolating two-generation

measures also generates a positive grandparent coefficient in a regression of offspring status on parent and

grandparent status, and vice versa. As many theoretical mechanisms can explain the former, the observation

of a positive grandparent coefficient does not provide evidence against the traditional Markov (parent-child)

perspective of intergenerational transmission. Indeed, statistical associations with grandparents vanish in four

of our five samples when we control also for the social status of the mother, which is often not observed in

multigenerational data. The large and robust grandparent effect that we find in the fifth sample seems to operate

through indirect mechanisms, which do not require direct contacts between grandparents and grandchildren, as

we show by exploiting quasi-exogenous variation in the time of grandparents’ death generated by World War II.

Finally, we compare the two theories’ performance in predicting multigenerational persistence. In partic-

ular, we identify the model parameters from three-generation data and use the estimated models to predict the

persistence in educational attainment across four generations. We then compare the models’ prediction to the

actual persistence across four generations. We find that the latent factor model provides a good approximation,

outperforming also the grandparental effects model. Overall, the literature’s traditional focus on parent-child

transmission, and its neglect of earlier ancestors, appears not a significant obstacle for understanding the per-

sistence of economic status across multiple generations.

The rest of the paper is structured as follows. Section 1 discusses recent theories of multigenerational

persistence and develops ways to test them. Section 2 describes our data and reports descriptive statistics.

Section 3 presents our evidence on the persistence of educational attainment and occupational prestige across

multiple generations in Germany. Section 4 presents our evidence on the latent factor and grandparental effect

models, and Section 5 compares their success in predicting multigenerational persistence. Section 6 concludes.
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1 Theory and Measurement

To summarise the degree to which a child’s status depend on her parents’ status, economists typically estimate

the slope coefficient b�1 in a linear regression of outcome yi,t in offspring generation t of family i on parental

outcome yi,t�1,

yi,t = a +b�1yi,t�1 + ei,t . (1)

The coefficient b�1 captures the degree to which status differences among parents are, on average, transmitted

to their offspring. Persistence across multiple generations can be similarly summarised by regressing yi,t on

outcomes of grandparents yi,t�2, great-grandparents yi,t�3, and so on. The sequence of coefficients

{b�1,b�2,b�3...,b�m}

or the corresponding correlation coefficients, which abstract from changes in the variance of the outcome across

generations, then summarise the longevity of status inequality across generations. We now discuss several

hypotheses on the relationship between two- and multigenerational persistence and propose ways to test them.

1.1 The Iterated Regression Procedure

Most of the existing literature observes data from two generations to estimate b�1, but cannot provide direct

estimates on the persistence of inequality over three or more generations. Instead, researchers have at times

iterated estimates of b�1 to predict multigenerational persistence, assuming that b�m ⇡ (b�1)
m 8m > 1. This

iterated regression procedure implies that status differences will disappear quickly even for high values of b�1

(see Stuhler, 2012, for a discussion).

Recently, researchers have begun to provide comprehensive evidence on multigenerational persistence.

However, only few studies are based on direct observations of family links (see Dribe and Helgertz, 2013,

and Lindahl et al., 2015), and these data are typically from small geographic areas. Other researchers thus rely

on novel methods to exploit repeated cross-sections instead.4 These studies typically find that b�m > (b�1)
m,

an observation to which we refer to as “excess persistence”. Several models of intergenerational mobility can

explain such excess persistence (Solon, 2014; Stuhler, 2012; Zylberberg, 2013). We turn to two interpretations

that have gained particular attention, and show how they can be tested in the data.
4Long and Ferrie (2013a) link individuals in British and U.S. censuses; Collado et al. (2013) exploit socioeconomic bias in the distri-

bution of surnames in two Spanish regions; Clark (2013, 2014), Clark and Cummins (2014) and Güell et al. (2015) rely on the informative
content in rare surnames; and Olivetti et al. (2014) on information in first names.
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1.2 The Latent Factor Model and Clark’s Hypotheses

Multigenerational persistence in socio-economic status may be higher than standard parent-child estimates sug-

gest, because parents transmit their status indirectly through the inheritance of an underlying latent factor rep-

resenting abilities, preferences, or other relevant characteristics (Clark and Cummins, 2014, and earlier working

papers; Stuhler, 2012). To capture this idea in a simple way, suppose that the intergenerational transmission of

observable outcome yi,t and unobservable endowment ei,t in a one-parent one-offspring family is governed by

yi,t = rei,t +ui,t (2)

ei,t = lei,t�1 + vi,t , (3)

where ui,t and vi,t are noise terms that are uncorrelated with other variables and past values. For simplicity, we

normalise the variances of yi,t and ei,t to one, so that slope coefficients can be interpreted as correlations.

In this “latent factor model”, the offspring inherits her unobserved endowment from the parent (according to

the “heritability” coefficient l ), and the endowment then translates into the observed outcome (according to the

“transferability” coefficient r).5 The observed correlation in outcome y between generation t and generation

t �m equals then

b�m = Cov(yi,t ,yi,t�m)

= r2Cov(ei,t ,ei,t�m)

= r2l m. (4)

The persistence of socio-economic status over generations thus decreases with both the persistence of the un-

observed endowment, as captured by l =Cov(ei,t ,ei,t�m), and the transferability of the unobserved endowment

into the observed outcome, as captured by r . Across multiple generations, however, persistence is predomin-

antly governed by l rather than r . This is because the latent factor ei,t is inherited m times across generations

but only twice transformed into outcome yi,t .

The iterated regression procedure implicitly assumes that the link between outcomes and latent factor is

perfect (r = 1 and thus Var(ui,t) = 0). In this case, estimates of b�1 could indeed be iterated to predict multi-

5This formulation can also capture earlier arguments on the dynamics of multigenerational mobility from the sociological literature.
For example, Fuchs and Sixt (2007) compare educational attainment of children from educational climbers to children from similarly
educated parents whose own parents had already high education, and find that children of educational climbers tend to do less well. In the
interpretation of the latent factor model, children of educational climbers (high yt , low yt�1) tend to do less well because on average they
have lower endowments et . However, sociological studies argue that high educational status may eventually feed back into its assumed
determinants, such as cultural or social capital (see, for instance, Fuchs and Sixt, 2007, and the reply by Becker, 2007).
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generational persistence, as b�m = (b�1)
m. If the link between outcomes and underlying latent factor is instead

imperfect (r < 1), we have b�m > (b�1)
m 8m > 1: status inequality is more persistent than the extrapolation

from parent-child measures suggests.

Clark’s Hypotheses. Clark (2014) and Clark and Cummins (2014) interpret their comprehensive empir-

ical evidence on status persistence of rare surname groups through the lenses of this model. They formu-

late three major hypotheses on the intergenerational persistence of the underlying unobserved endowment,

l = Cov(ei,t ,ei,t�1). First, they suggest that l is larger than the reduced-form correlation b�1, which is typic-

ally estimated in the literature. Second, they suggest that the difference is substantial. Their estimates of l are

around 0.75, implying that inequality persists across multiple centuries.6 Third, Clark (2014) suggests that l

is close to a “universal constant” across social systems and time, unaffected by the institutional and economic

environment.7 This hypothesis implies that social policy can affect individuals’ current positions, but not the

long-run prospects of their families. Moreover, it suggests that differences in parent-child mobility across coun-

tries and time, as for instance documented in Long and Ferrie (2013b), are due to differences in r and thus

without long-run implications.

Identification from Multigenerational Correlations. Our data is well suited to test Clark’s hypotheses, for

two reasons. First, individuals in our data are linkable across at least three generations. This allows us to

directly identify the parameters of the latent model from multigenerational correlations. Under the latent model

in equations (2) and (3), the parent-child coefficient in the standard intergenerational equation equals

b�1 =
Cov(yi,t yi,t�1)

Var(yi,t�1)
= r2l (5)

while the grandparent-child coefficient equals

b�2 =
Cov(yi,t yi,t�2)

Var(yi,t�2)
= r2l 2. (6)

The ratio b�2/b�1 thus identifies l , while (b 2
�1/b�2)1/2 identifies r . Second, our data contains measures of

three outcomes variables (formal schooling, schooling with university and vocational training, and occupational
6Most estimates for l reported in Clark (2014) and previous working papers are in the range 0.7-0.85, rationalising the substantial

persistence of status inequality across surname groups that he and his co-authors observe in several countries. Clark and Cummins (2014)
find an intergenerational elasticity of wealth for surname cohorts in England and Wales in 1858-2012 of “close to 0.75 for all periods” (p. 2).
Clark (2014) concludes that “it takes hundreds of years for descendants to shake off the advantages and disadvantages of their ancestors”.

7Clark reads his empirical results as evidence for the dominance of nature over nurture in the intergenerational process. A large literature
provides evidence on this question; for example, Björklund et al. (2006) study the relative importance of pre-birth (genetic and prenatal)
factors using Swedish adoption data.
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prestige) for five different samples. We can, therefore, not only test multiple times whether l is indeed larger

than b�1 (Clark’s first hypothesis) and close to 0.75 (second hypothesis), but also assess whether it is stable

over time (third hypothesis).

Assortative Mating. The argument that the inter-generational persistence of the underlying unobserved en-

dowment, Cov(ei,t ,ei,t�1), can be identified from multi-generational correlations carries over from the simplified

one-parent to a more realistic two-parent setting. Persistence in the two-parent setting depends strongly on the

degree of assortative mating in the population.

To see this, suppose that offspring’ endowments are determined by the average of father’s and mother’s

endowment according to

ei,t = l̃ ēi,t�1 + vi,t , (7)

with ēi,t�1 = (em
i,t�1+ep

i,t�1)/2, and where m and p superscripts denote maternal and paternal variables, respect-

ively. We continue to standardise the variance of yi,t , em
i,t , and ep

i,t to one. The parent-child correlation in outcome

yt then equals

b�1 = Cov(yi,t ,yx
i,t�1)

= r2Cov(ei,t ,ex
i,t�1)

= r2l 8x 2 (m, p), (8)

where

l = Cov(ei,t ,ex
i,t�1)

= l̃
⇣

1+Cov(em
i,t�1,e

p
i,t�1)

⌘
/2. (9)

In addition, the correlation between child outcome yt and the outcome of any of her grandparents equals

b�2 = Cov(yi,t ,y
x,y
i,t�2)

= r2l 2 8x,y 2 (m, p), (10)

where x specifies whether we follow the maternal or paternal lineage, and y specifies whether we consider the

7



grandfather (y = p) or grandmother (y = m) of that lineage.

It follows from equations (8) and (10) that also in the two-parent setting, the ratio b�2/b�1 identifies the

intergenerational persistence of the unobserved endowment between child and parent, l =Cov(ei,t ,ex
i,t�1). Fur-

thermore, equation (9) illustrates that l can interpreted as a reduced-form parameter that consists of two com-

ponents: (i) the heritability of average parental endowment l̃ , and (ii) the degree of assortative mating in the

population Cov(em
i,t�1,e

p
i,t�1). With perfect assortative mating, Cov(em

i,t�1,e
p
i,t�1) = 1 and the equations simplify

to the one-parent model discussed in the previous section. But with imperfect assortative mating, we have that

l < l̃ . The persistence of the endowments between one parent and his or her child increases in the degree of

assortative mating. Therefore, persistence in the two-parent setting is attenuated by the fact that parents are

unlikely to have exactly the same endowment.

Equation (9) has two important implications for Clark’s hypotheses. First, and as Clark acknowledges, the

degree of assortative mating has to be high to be consistent with the hypothesis that l is as large as 0.75. In

particular, if average parental endowments are not perfectly transmitted (l̃ < 1), spouse correlations in under-

lying endowment have to be substantially larger than the values typically estimated for spouse correlations in

observed status, such as educational attainment.8 Second, the degree of assortative mating should also vary little

across time and space to be consistent with Clark’s hypothesis that the persistence in the unobserved endowment

is close to a universal constant.

Measurement Error. As we describe in Section 2, our data is likely to reliably measure outcomes such

as education and occupation. We nevertheless study the consequences of measurement error in Appendix A,

and summarise our findings here. First, while classical measurement error leads to attenuation in the estimated

autocorrelations b�1 and b�2 (see Solon, 2014), and thus also in (b 2
�1/b�2)1/2 = r , the attenuation bias cancels

out in the ratio b�2/b�1 = l if the signal-to-noise ratio remains stable across generations. However, one may

expect the signal-to-noise ratio in our data to vary across generations, as information on the grandparent, parent,

and offspring generation all come from respondents in the parent generation (see Section 2 for details). As

respondents directly observe their own educational careers and that of their children, but not the educational

careers of their parents, they might give less precise information on the latter. Appendix A shows that even in

this case, we can obtain consistent estimates of l as long as respondents know their own education equally well

as that of their children.
8For example, Ermisch et al. (2006) estimate a spouse correlation in educational attainment of around 0.5 for a German sample. The

correlation is similar in our data.
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Time-varying Coefficients. Following the exposition of the latent factor model in Clark (2014) and Clark

and Cummins (2014), we have so far assumed that r is time-constant. However, estimates of the persistence in

the unobserved endowment can be affected by changes in r across generations. In Appendix B we, therefore,

consider a latent factor model with time-varying coefficients to illustrate the problem, and to show that compar-

isons across our various samples and outcomes support the robustness of our findings. We also show that even

with time-varying r , we can identify the persistence in the unobserved endowment if we observe four genera-

tions of individuals. Moreover, we estimate all parameters from correlation instead of regression coefficients,

so as to abstract from secular trends in the variance of our outcome variables over time.

Comparison to Clark’s Identification Strategy. Clark and co-authors identify the parameters of the latent

factor model by averaging outcomes within surname groups. To understand the intuition behind their approach,

note that equations (2) and (3) resemble an errors-in-variables model, so the usual strategies to address meas-

urement error can be applied. In particular, the influence of errors can be reduced by averaging over repeated

measurements of a variable, or within groups of individuals who share a similar level of endowment.

Such groups are readily available also in our data, as we observe siblings who share the same parental

endowment ei,t�1. To see how this may enable identification, consider the sibling correlation bsib, defined as

the share of status variance explained by family identifiers. In the latent model, this sibling correlation equals

bsib = r2l 2 and the ratio bsib/b�1 therefore identifies l . Clark’s strategy to average across individuals in rare

surname groups extends this logic to more distant family members: as individuals who share a rare surname

are likely to share common ancestors, the average level of endowment differs systematically across surname

groups. The principal advantage of this strategy is that parent-child links need not be directly observed.

This example illustrates that, in principle, quite different strategies may lead to identification of l .9 How-

ever, these strategies are not equally robust to plausible deviations from the latent factor model in its simplest

form. For example, siblings share not only the same parents, but also other environmental factors – the com-

ponents ui,t and vi,t are thus likely to be correlated within families.10 Likewise, Clark’s assumption that they are

uncorrelated within rare surname groups may be violated if surnames themselves are associated with character-

istics that are not captured by the latent model.11 A second potential caveat is that regression to the mean can be
9Related, Vosters (2015) and Vosters and Nybom (2015) show that the aggregation of multiple status measures into a single “least-

attenuated” estimate yields rates of persistence that are only modestly higher than estimates based on parental income only.
10Capturing shared environmental factors by zi,t and denoting its variance by s2

z , the ratio bsib/b�1 then identifies l +s2
z /r2l – an

upper bound for the heritability parameter l . If environmental factors are important, s2
z is large and the upper bound will be uninformative.

11Güell et al. (2015) note that averaging within surnames may “average away” intergenerational mobility, as group-average estimates
capture only between-group mobility, which depends on the respective group variable. In particular, Chetty et al. (2014) argue that some
of the surnames studied in Clark (2014) correlate with race or ethnicity, such that sustained inequality across surname groups may partly
reflect inequality along ethnic lines. Finally, Solon (2015) notes that other types of group-average estimates from the previous literature do
not support Clark’s hypotheses.
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only observed for surnames whose average status is sufficiently far from the population average. Accordingly,

most but not all estimates in Clark (2014) are based on “elite” surnames, which may be less informative about

the average degree of mobility in a population if intergenerational transmission is different in the tails of the

distribution.12 Our approach to identify l via multigenerational correlations on the individual level requires

direct information on family linkages and can be sensitive to measurement error (see Appendix A) but avoids

the particular caveats that follow from the usage of grouped data.

1.3 The Grandparental Effects Model

Recently, the traditional assumption that status differences are only transmitted from parents to children has been

forcefully challenged by Mare (2011). Instead, Mare argues that grandparents might have a direct influence on

status differences among their grandchildren – that grandparents matter, at least in some populations or periods.

Partly in response, a fast-growing strand of the literature aims to test and quantify “grandparental effects” (see

Pfeffer, 2014, for a recent overview, and Solon (2014) for a theoretical treatment). These studies typically test

in a first step if, conditional on parental status, a statistically significant association remains between offspring

and grandparental status (see for example Chan and Boliver, 2013, and Hertel and Groh-Samberg, 2013).

Such independent associations have in turn important consequences for the longevity of status differences

across generations. To see this formally, suppose that offspring’s outcome depends positively on both her parent

and her grandparent outcome

yi,t = g�1yi,t�1 + g�2yi,t�2 + vi,t , (11)

with g�1 > 0 and g�2 > 0. Suppose further that g�1 + g�2 < 1, so that the AR(2) process in equation (11) is

stationary. The two- and three-generation correlation coefficients in this model are given by

b�1 =
Cov(yi,t ,yi,t�1)

Var(yi,t�1)
=

g�1

1� g�2

b�2 =
Cov(yi,t ,yi,t�2)

Var(yi,t�2)
=

(g�1)2

1� g�2
+ g�2.

We then again have that b�2 > (b�1)2, i.e., status inequality is more persistent than predicted by iterating

parent-child elasticities.
12It is an empirical question if this selectivity matters. Clark (2014) and Clark and Cummins (2014) find a similar degree of persistence

also when considering broader groups of the population. Björklund et al. (2012) find particularly high persistence among top incomes in
Sweden.

10



Duality. As noted by Mare (2011), both strands of the literature, the strand on direct grandparental effects and

that on multigenerational persistence, are thus closely related. In a regression context we can show how closely,

as the relationship between the coefficient on grandparents and multigenerational associations can be derived

precisely. The slope coefficients in a multivariate regression of child outcome yt on parent outcome yt�1 and

grandparent outcome yt�2, bp and bgp, are given by

bp =
Cov(yt , ỹt�1)

Var(ỹt�1)
and bgp =

Cov(yt , ỹt�2)

Var(ỹt�2)
, (12)

where ỹt�1 is the residual from regressing yt�1 on yt�2, and ỹt�2 is the residual from the reverse regression

(Frisch-Waugh-Lovell theorem). Under stationarity, both auxiliary regressions yield the intergenerational coef-

ficient b�1, so that we can rewrite the grandparent coefficient as

bgp =
Cov(yt ,yt�2 �b�1yt�1)

Var(yt�2)

Var(yt�2)

Var(ỹt�2)
=
�
b�2 �b 2

�1
�Var(yt�2)

Var(ỹt�2)
. (13)

In other words, any causal process that generates sustained excess persistence in the form of b�2 > b 2
�1 also

generates a positive grandparent coefficient in multivariate three-generation regressions, and vice versa.13 The

assumption of stationarity simplifies the derivation but is not required for the result (see Online Appendix C.1).

The observation of a positive grandparent coefficient is thus simply the flip side of a less-than-geometric

decay of multigenerational associations. As we have seen in the previous section, the latter observation can also

be explained by the latent model, or various other models with a memory of just one generation (see Solon,

2014; Stuhler, 2012; and Zylberberg, 2013). Equation (13), therefore, illustrates that a positive grandparent

coefficient in a child-parent-grandparent regression is no evidence for an important role of grandparents in the

transmission process.

Test Procedures. We follow two strategies to test for a direct role of grandparents. Our first strategy is to test

whether the positive grandparent coefficient declines–or even vanishes–if we control more fully for potentially

relevant parent characteristics (as in Warren and Hauser 1997). This strategy is motivated by the observation

that in a Markov model, a positive grandparent coefficient in a regression of child on parent and grandparent out-

comes reflects correlation with other omitted parental characteristics. For example, the grandparent coefficient
13Clark and Cummins (2014) show that conditional on parental status, offspring and grandparental status will be positively correlated

if the latent model correctly describes the true underlying mobility process. We show that this positive correlation extends to any data
generating process that generates b�2 > (b�1)2.
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in the latent factor model equals (from eqs. (5), (6), and (13))

bgp =
r2l 2 �r4l 2

1�r4l 2 , (14)

which is positive for 0 < r < 1 and 0 < l < 1. Under the latent model, the grandparent coefficient declines if

we include multiple parental outcomes, each related to the latent factor by equation (2) (see Online Appendix

C.2). In fact, the coefficient may eventually converge to zero even when the underlying latent variable is not

observed, a hypothesis that we could test since our data include a large set of covariates for both parents in the

index generation. In practice, however, it becomes increasingly difficult to judge if a variable contains further

information on an individual’s underlying endowment.

An often omitted but likely important characteristic is the status of the second parent. Motivated by this

observation, we test whether the grandparent coefficient remains robust to the addition of observed status of

the initially omitted parent. This test only allows us to reject direct grandparent effects. If we continue to

find a positive grandparent effect in regressions that condition on the status of both parents, we can still not

rule out that other omitted parental characteristics are driving the result.14 The two-parent version of the latent

factor model provides an illustration. In this model, the grandparent coefficient in a regression of child outcome

on parent and grandparent outcome from the same lineage (e.g. father and paternal grandfather) is given by

equation (14), and thus positive. The coefficient is substantially smaller, but non-zero, when the observed status

of both parents is included (see Online Appendix C.3).15

We can implement this test, as our data contain educational and occupational status measures of both father

and mothers, and their respective parents. This opportunity is rare, because data that span three generations tend

to capture only the socio-economic status of one parent, usually the father (as in the U.S. census data studied

in Long and Ferrie, 2013a). An important exception is the study by Warren and Hauser (1997) who, using

data from the Wisconsin Longitudinal Study, find no evidence for an independent influence of grandparents

once they condition on the status of both parents. However, the influence of grandparents may be context-

specific and vary with institutional circumstances. For example, Mare (2011) argues that “mid-twentieth century

Wisconsin families may be a population in which multigenerational effects are unusually weak” (an argument

adopted by others, such as Chan and Boliver, 2013), and calls for research on populations that underwent large

transformations. Our data are interesting also from this perspective, as they comprise five distinct cohort groups
14Since omitted variables could, in principle, also bias the grandparent coefficient downwards (see Solon, 2014), even a non-positive

grandparent coefficient is no definite evidence against direct grandparent effects.
15A two-parent version of the AR(2) model in (11) generates observationally similar implications. The interpretation of the remaining

coefficient on grandparent status would differ – causal in the AR(2), spurious in the latent model – but is less relevant if this coefficient is
small.
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that were differently affected by events such as World War I and II.

Our second strategy to test for a direct role of grandparents uses this historical context to search for quasi-

exogenous variation in children’s exposure to their grandparents. Many of the channels through which grandpar-

ent effects may work require some level of proximity and interaction between grandparents and grandchildren.

Highly-educated grandparents might, for instance, improve the educational success of their grandchildren by

helping them with their homework or by serving as role models. However, grandparents can also influence their

grandchildren without interacting directly with them, e.g., through wealth transmission, networks or reputation

effects. To distinguish between the importance of direct and indirect effects, we test whether the size of any

positive grandparent coefficient in (11) increases with grandchild’s exposure to the grandparent–as it should if

the coefficient indeed reflected the positive influence of grandparents and grandchildren spending time together.

This test boils down to re-estimating (11), adding interaction terms between the intergenerational coeffi-

cients and a measure of grandparent exposure. Following Adermon (2013) and Zeng and Xie (2014), we use

the time of death of the grandparent as a measure of grandparent exposure. The idea is simple: Grandparents

who die early cannot have effects on their later-born grandchildren that require personal contact. However, time

of death might be correlated with unobserved factors that themselves influence the intergenerational transmis-

sion coefficient. To at least partly account for this potential source of bias, we exploit quasi-exogenous variation

in the time of death generated by World War II. In particular, we estimate separate coefficients for grandfathers

who were killed in World War II and those who were not, restricting the sample to grandfathers who served in

the war. Conditional on war deployment, the probability of dying in the war was arguably less correlated with

unobserved factors, in particular since a soldier’s region of deployment did not depend on his region of origin

(Overmans, 1999).

2 Data and Descriptive Statistics

Our empirical analysis uses life history data from three retrospective surveys, the German Life History Study

(Deutsche Lebensverlaufsstudie, LVS), the Berlin Aging Study (Berliner Altersstudie, BASE), and the adult

starting cohort of the National Educational Panel Study (Nationales Bildungspanel, NEPS). All three studies

use standardised, face-to-face or telephone interviews to collect retrospective life histories of respondents.

The German Life History Study (Deutsche Lebensverlaufsstudie, LVS) is based on nationally representative

samples of eight birth cohorts born in Germany between 1919 and 1971 (see Mayer, 2007 for an overview). We

use data from two waves of the LVS. The first wave (LVS-1) surveys individuals in West Germany born in the
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years 1919-21, the second one (LVS-2) surveys individuals born in 1929-31.16 Both samples are representative

for German citizens who live in the Federal Republic of Germany or West Berlin (foreigners are excluded). The

LVS-1 and LVS-2 consist of life histories from 1412 and 708 respondents, collected in 1985-88 and 1981-83,

respectively. The LVS asks respondents in particular about their education, employment, and family history.

The Berlin Aging Study (Berliner Altersstudie, BASE) is a multidisciplinary survey of old people aged 70

to 105 years who live in former West Berlin (see Baltes and Mayer, 2001 for an overview). The main study

was conducted between 1990 and 1993, and collected data on 516 respondents, randomly sampled from the city

registry of Berlin. The sample was stratified by age and gender, so that in each of six age groups (70–74, 75–79,

80–84, 85–89, 90–94, and 95+ years), 43 men and 43 women were surveyed. BASE distinguishes between

four research units. We mainly use information from the sociology unit, which focuses on the employment and

family history of respondents, their family relationships and their economic situation.

The adult starting cohort survey of the National Educational Panel Study (“Nationales Bildungspanel”,

NEPS) is a repeated survey of individuals who are born between 1944 and 1986 and live in Germany (see

Blossfeld and Maurice, 2011, for an overview). The survey provides detailed – partly retrospective – information

on education, employment, and family histories, which have been collected between 2007 and 2013. We use

data on individuals born 1944-49 (NEPS-1) and 1950-54 (NEPS-2). NEPS-1 and NEPS-2 contain data on 1943

and 2144 respondents, respectively.

Importantly, all five surveys (LVS-1, LVS-2, BASE, NEPS-1, NEPS-2) ask respondents not only about

their own education and employment history but also about the educational attainment and occupation of their

parents, spouses, siblings and children. In addition, persons interviewed for BASE were asked about the educa-

tion of their grandchildren.17 The data sets thus contain measures of occupational status for three consecutive

generations and measures of educational attainment for up to four generations.

Across the four generations, the data sets span an historical episode of more than a century, and are thus

a unique instrument for analysing intergenerational mobility in late 19th and 20th century Germany. Figure 1

gives an overview of the birth cohorts covered by the five samples. For each generation and sample, the figure

plots the inner quartile range of the year of births (25th and 75th percentiles), along with the 10th, 50th and 90th

percentiles indicated by additional vertical bars.

Along with their spouses, the actual respondents constitute the second or parent generation (G2) of our
16The labels LVS-1 and LVS-2 reflect the chronology of the cohorts’ years of birth rather than the chronology of data collection. In fact,

the LVS-2 data was collected before LVS-1. We do not use data for younger birth cohorts because their children have usually not completed
their educational career at the time of data collection.

17The first part of the LVS-1, covering 407 respondents, also collected data on grandchildren. However, the question was dropped in
the second part of the LVS-1 that covers 1005 respondents. We do not use the LVS-1 data on grandchildren because most of them had not
finished school at the time of the interview.
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analysis.18 While the two LVS waves focus on cohorts born within narrow year bands, the oldest and youngest

respondents in BASE are 35 years apart (see Figure 1). The parents of respondents, born on average in 1876

(BASE), 1889 (LVS-1), 1900 (LVS-2), 1916 (NEPS-1), and 1922 (NEPS-2) constitute the first or grandparent

generation (G1), and the children of respondents, born on average in 1939 (BASE), 1950 (LVS-1), 1959 (LVS-

2), 1975 (NEPS-1), and 1981 (NEPS-2) constitute the third or children generation (G3). The grandchildren of

respondents, sampled only in BASE, are on average born in 1969. They constitute the fourth or grandchildren

generation (G4).

Eliciting detailed life history data is less costly and time consuming if the data is collected retrospect-

ively. However, retrospective data might suffer from recall bias, as respondents might not recall when an event

happened or how exactly it took place. Furthermore, the reliability of retrospective data might decrease as

respondents are asked to go further back in their family histories (Pfeffer, 2014). Measurement error should,

however, only play a minor role in our analysis. First, our analysis focuses on the transmission of educational

and occupational attainment. Retrospective surveys collect these dimensions of socio-economic status more re-

liably than other dimensions, such as income. Second, respondents were only asked to go back one generation

in their family history, as they were asked about their parents but not their grandparents. Third, the quality of

the retrospective data used in our study has been extensively evaluated, and its completeness and consistency

has been improved by careful data editing (see Mayer, 2007 for a discussion). Finally, we note in Section

1.2 and Appendix A that plausible forms of measurement error, while leading to attenuation in the estimated

autocorrelations b1 and b2, have little consequence for estimates of l , our central parameter of interest.

2.1 Measures of Educational Attainment and Occupational Status

Our empirical analysis uses two different measures of educational attainment. The first measure counts only

years of schooling. The second adds time spent in tertiary education or vocational training. The data sets

generally record the highest school and vocational training degrees of an individual (LVS and NEPS also record

the entire education history of index persons). We calculate years of education as the minimum time lengths

required to obtain a particular degree.19

The BASE data set does not record educational attainment for grandmothers. Moreover, BASE only records

school but not vocational training degrees for the grandfather, child, and grandchild generations. Consequently,
18While we do have detailed information on spouses, the data sets does not identify a specific spouse as the parent of an index person’s

child. Online Appendix D.3 describes the procedure that we use to link the spouses of index persons with their children.
19We take the minimum years of education required for a degree from Müller (1979). Online Appendix D.1 provides a detailed overview

on how we mapped school, university, and vocational degrees into years of education. We keep this mapping constant over time, but our
results remain robust to accounting for the introduction of a compulsory 9th grade after World War II.
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we use years of schooling as our only measure for educational attainment in the analysis of the BASE data.

Some individuals of the younger generation did not yet complete schooling when the data were collected.

This problem is relevant for the fourth generation in the BASE and the third generation in the LVS-2 sample,

as the share of individuals still or not yet in school is 30.4% among the grandchildren of respondents in BASE,

and 20.8% among the children of respondents in LVS-2. To avoid selectivity and to increase the sample size

of our analysis, we generally use information on current school attendance to predict the final school degree of

those individuals who are still in school and already attending secondary school (information on current school

attendance is not available in LVS-1). At the age of ten, students in Germany are tracked into a high, medium,

and low secondary school track. Changes between these different tracks are rather uncommon. The initial

school track is, therefore, a strong predictor for the final school degree.

Our indicator for occupational status is the maximum occupational prestige score of an individual that we

observe in the data. We base our analysis of occupational mobility on the LVS-1 and BASE samples only,

as the LVS-2 and NEPS data do not contain information on the occupational status of the third generation.

Moreover, our analysis is restricted to three generations, as the fourth generation was not old enough at the time

of measurement for their occupational status to be informative about their long-run labour market success.

Both the LVS-1 and the BASE data record the occupation of the parents, spouses, and children of re-

spondents at multiple points of their life cycles and document the entire occupational history of respondents

themselves (see Online Appendix D.2 for details). The occupations are coded according to the three digit codes

of the International Standard Classification of Occupations 1968 (ILO, 1969). Moreover, the data provide the

occupational prestige score of each occupation, measured on the Magnitude-Prestige-Scale (MPS) (Wegener,

1985, 1988). The MPS is based on several prestige studies conducted in West Germany and ranges from 20

points (unskilled labourers) to 186.8 points (medical doctors). It is among the most commonly used prestige

measures for Germany.

2.2 Descriptive Statistics

Table 1 reports, by generation, descriptive statistics for all five samples. Columns (2)-(5) report the mean

birth year, educational attainment, and occupational prestige across generations and samples. The number in

brackets is the share of non-missing observations. The final two columns report the total number of individuals

in each group (counting also those with missing information), and the number of complete lineages for whom

we observe educational attainment for at least one individual in the first three or all four generations.

The main reason for attrition of families is that individuals have no children. The LVS-1 (LVS-2) sample
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contains data on 1412 (708) respondents (see column (6)). Of those, 1218 (625) individuals have (biological)

children. The share of respondents without children is slightly larger in the NEPS than in the LVS data. Child-

lessness is particularly pronounced in the BASE data, presumably reflecting the selective character of the sample

(old individuals living in West Berlin). Of the 516 respondents in BASE, only 351 have children and 308 have

grandchildren. In addition, information on the educational attainment of children is missing somewhat more

frequently in the BASE data than in the other data sets.20 The LVS-1 and LVS-2 samples contain data on

2515 and 1456 complete lineages across three generations, the BASE sample on 551 complete lineages, and the

NEPS-1 and NEPS-2 samples on 2884 and 3263 complete lineages. The large number of observations allows

us to be selective in our choice of sampling procedures, which we discuss in the next section.

Columns (3) and (4) of Table 1 show the mean and the share of non-missing observations of our two meas-

ures of educational attainment. For all five samples, we observe that time spent in education increases from

one generation to the next. In the LVS-1, for instance, the first generation (born on average in 1889) spent on

average 8.32 years in school (column (3)). Years of schooling increases to 8.77 years in the second generation

(born on average in 1920) and to 9.80 years in the third generation (born on average in 1950). Along with

education, occupational prestige also increases across generations.

However, the expansion of education came to an halt, and was even reversed, for the cohort born around

1930. This cohort (the second generation of the LVS-2 sample) was still in school during the final years of

World War II and made the transition into the labour market in the immediate post-war period. The war severely

reduced educational opportunities, as many schools were closed and apprenticeship position were lacking in the

devastated economy (see, e.g., Müller and Pollak, 2004). As a consequence, the cohort born 1929-31 spent only

8.56 years in school and 9.95 years in school, university and vocational training, and thus considerably less than

the cohort born ten years earlier (the second generation of the LVS-1 sample).

2.3 Lineages

The theoretical literature typically considers simplified one-parent one-offspring family structures, but in prac-

tice we face a varying number of lineages within each family. While of limited importance in two-generational

studies, this issue becomes important in the multigenerational context. Two problems arise.

First, while we may follow both the matrilineal (all-female) or patrilineal (all-male) ancestors of an indi-

vidual, most data sets do not cover all family members. For our analysis we could simply pool all observed lin-

eages, or reduce the data to one observation for each pair of parents (e.g. their average or maximum status). But
20Almost 20% of all children born to the index persons surveyed by BASE died before their parent, many during World War II. For these

children, information on their educational attainment is often missing.
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the degree to which occupational or educational outcomes capture socio-economic status may differ between

men and women, in particular for the earlier generations in our sample, in which female labour market parti-

cipation was low. The correlation between occupational and educational measures is similar among men and

women in the third generation, but substantially lower among women in the first two generations. Moreover, the

observed parent-child correlations are lower for mothers than for fathers in our first generation for educational

outcomes, and in the first two generations for occupational outcomes. For our analysis of educational outcomes,

we therefore sample women in generations 2 and 3, but not in generation 1. For occupational outcomes, we

sample women in generation 3 only and use male partners instead of female index persons in generation 2 (when

observing their own parents is not required, i.e., for estimation of G2-G3 but not G1-G2 regressions). However,

our results are similar when based on alternative sampling schemes, and we report a selection of estimates from

patrilineal and matrilineal lineages in the Online Appendix (see Table 13).

Second, the number of children, and thus the number of observations per generation, varies across families.

Figure 3 in the Online Appendix depicts a typical family tree over four generations to illustrate the problem. The

family provides three observations for the estimation of mobility across four generations (e.g. GC1-P1, GC2-

P1, GC3-P1), but these lineages are not equally distributed across family members in the third generation: two

lineages pass through child 1 (C1), one through child 2 (C2), and none through child 3 (C3). If our objective is

to predict mobility across four generations based on observed mobility in the first three, should we include those

lineages that did not reproduce to the fourth generation, or weight those with multiple children accordingly?

The answers to these questions matter, because the joint distribution of parental and offspring status varies

substantially with subsequent fertility of the latter. Table 12 in the Online Appendix reports, conditional on the

number of children of interviewees in the LVS-1, the mean years of schooling of respondents and their parents,

and estimates of the intergenerational coefficient between the two generations. Interviewees with multiple

children have substantially lower educational attainment, and a higher intergenerational coefficient, than those

with one or no child.

Two-generational estimates may thus fail to predict multigenerational correlations even when intergenera-

tional transmission does follow a simple autoregressive process within each lineage, simply because we extra-

polated from the wrong set of lineages. We aim to distinguish this source for failure of the iterated regression

procedure, related to sampling issues and heterogeneous fertility patterns, from fundamentally different theories

of status transmission within families, such as those that we discussed in Section 1. One potential solution is

to use the same set of lineages for all regressions, keeping the number of observations that each family tree

contributes constant across generations. For example, the lineages printed in bold in Figure 3 contribute three
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observations to the estimation of two-, three- and four-generation coefficients, while the other lineages are

excluded. We follow this approach in those parts of our analysis where the sample sizes are sufficiently large.

3 Direct Evidence on Multigenerational Persistence

This section presents our results on the transmission of educational attainment and occupational status over

multiple generations, and compares our direct estimates to predictions derived from two-generation data. We

first analyse the persistence across three generations and then study the transmission of educational inequality

across four generations.

Three Generation Evidence. Table 2 reports regression coefficients to summarise the transmission of in-

equality across two and three generations. Panel A describes intergenerational dependency in educational at-

tainment, measured in years of schooling, for each of our five samples. Panel B considers a broader measure

of educational attainment that includes tertiary and vocational education for LVS-1 and NEPS-1 samples, and

Panel C considers a measure of occupational prestige for LVS-1 and BASE.21 For each case, we report (i) the

intergenerational coefficients across two generations, (ii) the actual coefficient across three generations, and

(iii) the predicted coefficient across three generations, as derived from the iteration of the two intergenera-

tional measures (see Section 1). Table 3 reports the corresponding correlation coefficients, which abstract from

changes in the variance of the outcome variable across generations. The comparatively large sample sizes allow

us to estimate coefficients in a balanced sample, which includes only complete lineages.

A number of findings emerge from our analysis. First, our estimates corroborate earlier findings (see for

example Shavit and Blossfeld, 1993, and Heineck and Riphahn, 2009) that in comparison to other OECD coun-

tries, the persistence of educational attainment across two generations is particularly strong in Germany. The

average across all coefficient estimates on years of schooling is 0.501 for regression and 0.422 for correlation

coefficients (Tables 2 and 3, Panel A), between 20 and 30% higher than the corresponding averages in recent

evidence for Sweden in Lindahl et al. (2015). The coefficients are similar if we include time spent in vocational

training and tertiary education in our educational measure (Panel B), and slightly lower in occupational prestige

(Panel C). While the regression coefficients differ substantially across generations, the correlation coefficients

are comparatively stable (consistent with evidence from other countries reported in Hertz et al., 2008). This

pattern implies that while there are important non-stationarities in the intergenerational process, they are partly
21We do not report estimates based on the broader measure of educational attainment for LVS-2 and NEPS-2, as this measure is system-

atically missing for later born children. However, these estimates, which are available upon request, are in line with the evidence that we
present here.
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due to changes in the variance of the marginal distributions.

Second, the comparatively high intergenerational persistence of educational attainment in Germany extends

beyond two generations: the average estimate across three generations is 0.354 for regression and 0.251 for

correlation coefficients, between 20 and 40% higher than comparable estimates for Sweden in Lindahl et al.

(2015). Due to differential trends in cross-sectional inequality, the gap is particularly large in regression coef-

ficients. Remarkably, the average coefficient estimate across three generations in Germany is nearly as high as

the corresponding average across two generations in Sweden.

Third, the iteration of intergenerational measures substantially underpredicts the persistence of economic

status. The actual three-generation estimates in schooling (Panel A) are on average about 40% higher than the

predicted coefficients. The difference is statistically significant on the 1% level in the LVS-2, NEPS-1, and

NEPS-2, and on the 10% level in the BASE sample (based on repeated sampling on the family level with 500

repetitions). This pattern extends to our broader measure of educational attainment (Panel B) and to matrilineal

or patrilineal lineages (see Table 13 in the Online Appendix). Under-prediction is even more severe in the

occupational prestige variable, in which the actual coefficient estimate is up to 70% larger than the predicted

value (Panel C).

Our evidence is thus consistent with findings from other countries in the recent literature: in both low- and

high-mobility countries, iteration of intergenerational measures can lead to a substantial under-prediction of the

long-run persistence in educational inequality. Since iteration implies that observed cross-country differences

in mobility grow exponentially across generations, the method also overstates differences between countries.

Four Generation Evidence. The BASE sample allows us to consider the transmission of inequality in school-

ing across four generations. Table 4 reports the corresponding regression and correlation coefficients. In contrast

to our previous analysis for three generations, we now report estimates from an unbalanced sample that includes

incomplete lineages, which do not extend over four generations. The differences between the two- and three-

generation estimates in Table 4 and the corresponding entries in Tables 2 and 3 reflect thus the importance of

sampling choices. As expected (see Section 2.3), these choices do matter, but the broad magnitude of individual

estimates and their difference across two or three generations remains the same.

The inclusion of an additional generation yields direct estimates of persistence across four generations, and

additional estimates across two and three generations, allowing us to test the performance of the iteration pro-

cedure in two additional cases. The evidence supports our previous conclusion: the iteration of intergenerational

coefficients understates actual persistence by between 35% (correlation coefficients across first three) and 95%

(regression coefficient across four generations). Actual persistence across four generations is not negligible,
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with an estimated regression coefficient of about 0.2 and a correlation coefficient of 0.16.

4 Testing Models of Multigenerational Transmission

4.1 Evidence on the Latent Factor Model

This section presents our evidence on the stark interpretation of multigenerational correlations that Clark (2014)

has recently offered. In particular, Table 5 reports parameter estimates of the latent factor model that is underly-

ing his arguments for each of our outcomes and samples. These parameter estimates are based on the inter- and

multigenerational correlations reported in Table 3, and use the fact that such direct evidence on the individual

level is sufficient to identify the model parameters (see Section 1).

The first two columns of Table 5 report the average of the two parent-child estimates b̂�1 (i.e., the average

of the intergenerational correlations between G1 and G2, and between G2 and G3) and the grandparent-child

estimate b̂�2. Parameter estimates in columns (3) and (4) are then given by l̂ = b̂�2/b̂�1 and r̂ =(b̂ 2
�1/b̂�2)1/2.

We compute bootstrapped standard errors by repeated resampling from the respective estimation sample on

the family level. We compute the parameter estimates also for the comparable evidence on multigenerational

correlations in Sweden from Lindahl et al. (2015), and report them in Panel D.

A number of implications follow from the comparison of these estimates across outcomes, the two coun-

tries, and time. First, in each case the estimated persistence of the latent factor l is larger than the estimated

parent-child correlation in status.22 The difference is often substantial, in particular for the occupational status

measure. Our evidence is therefore consistent with Clark’s first hypothesis – that the observed intergenerational

correlations understate the strength of the actual underlying transmission process and thus the degree of status

persistence across multiple generations. Second, our estimates of l are lower, and in some cases substantially

lower, than the estimates that Clark derives from his analysis of rare and elite surnames. Our estimates for

Germany range between 0.494 and 0.699, and do not support Clark’s second hypothesis that l is around 0.75.

The estimates of l for Sweden implied by the correlations reported in Lindahl et al. (2015) are lower as well.23

Both findings are robust to alternative estimation procedures. Column (5) of Table 5 reports estimates

for l that are based only on intergenerational correlations between G1 and G2. This alternative estimator is

based on fewer sample moments, and thus has larger standard errors, but is more robust to plausible forms
22This observation follows directly from l = b�2/b�1 and the fact that multigenerational correlations in both the German and Swedish

data are characterised by excess persistence.
23Clark (2012) acknowledges the difference between his estimates and the evidence reported in Lindahl et al. (2015) but argues that the

difference is not statistically significant. In our sample, we can reject the null hypothesis l = 0.75 on the 1% level for schooling outcomes
in the LVS-1, NEPS-1, and NEPS-2, and on the 5% level for schooling in BASE (based on a bootstrap procedure that redraws samples on
the family level).
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of measurement error in the data (see Appendix A for details). In particular, while our baseline estimator in

column (3) remains consistent as long as the signal-to-noise ratio is similar across generations, the estimator in

column (5) is consistent even if there are larger errors in the status of respondent’s parents. However, estimates

in column (5) are similar (and on average slightly lower) than the corresponding baseline estimates, suggesting

that response errors in the first generation are not a large concern. Moreover, we note in Appendix B that

estimators based on four instead of three generations in the BASE sample, which are robust to changes in r

across generations, yield similar estimates as well.

Finally, our findings are also not supportive of Clark’s third hypothesis – that the true rate of persistence is

constant across time and space. The verdict is not as unambiguous: while parent-child correlations are lower in

Sweden than in Germany, estimates of l are relatively close to each other.24 However, the differences across

time within Germany are substantial. For schooling, our estimate of l in the LVS-2 is more than 40% higher

than in the LVS-1 and more than 20% higher than in the BASE sample.25 This finding suggests that the true

rate of social mobility is not constant, but subject to the environment. However, we cannot conclusively rule out

that changes in rt drive the observed differences in l (see Appendix B for details).

Overall, therefore, we find support only for Clark’s first main hypothesis. Nevertheless, the latent model can

rationalise the finding that the iteration of intergenerational correlations persistently understates the longevity

of inequality across multiple generations.

Figure 2 compares the degree of longevity implied by our estimates to the longevity implied by Clark’s

second hypothesis and by the iterated regression procedure. We plot (1) the observed correlations in educational

attainment across two and three generations; (2) the predicted correlations according to the iteration of the

average parent-child correlations; (3) the predicted correlations according to the latent factor model, based on

parameter estimates reported in Table 5; (4) the predicted correlations based on Clark’s hypothesis that l = 0.75.

We focus on the broad measure of educational attainment in the LVS-1, in which our estimate l̂ is 0.616 and

thus close to the average estimate across all cases.

The iteration procedure suggests that individuals regress quickly to the mean; inequality is not sustained

across many generations. In contrast, the latent model, together with our estimate l̂ = 0.616, suggests that

multigenerational correlations remain non-negligible over much longer time intervals, falling below 0.1 only

in the sixth generation (compared to the fourth generation for the iteration procedure). As differences in l
24Instead, estimates of r are lower in Sweden. This finding suggests that Sweden’s higher mobility rates may be less due to differences in

the actual intergenerational transmission process, but instead due to differences in the degree to which individuals’ underlying endowments
determine socio-economic status. Such pattern would be consistent with Clark’s “universal constant” hypothesis.

25As the sample sizes are large, we can reject the hypothesis of equal heritability, lLV S�1 = lLV S�2, on the 5% level (p = 0.016). The
sample size in the BASE data is substantially smaller, but the p-value for the hypothesis that lLV S�2 = lBASE is still p = 0.152.

22



accumulate across generations, even apparently modest differences lead to substantially different long-run per-

sistence: Under Clark’s second hypothesis, l = 0.75, the multigenerational correlation after eight generations

is four times higher than under our estimate l̂ = 0.616. Our evidence thus implies substantially lower longevity

of socio-economic inequality than the recent evidence from surname studies reported by Clark.

4.2 Evidence on Grandparental Effects

The latent factor model provides a simple rationalisation for the observed persistence of status inequality across

generations, but many studies in the recent literature focus on an alternative hypothesis: that grandparents have

an independent causal effect on their grandchildren.

Following these studies, we regress, for each outcome and sample, offspring status on both father and

grandfather status. The coefficient estimates are reported in the first two columns of Table 6. The coefficient on

grandparent status is positive in all and statistically significant (on the 5% level) in seven of our nine cases. Its

size is non-negligible, and its sign is in contrast to predictions from the Becker and Tomes model, in which the

grandparent coefficient should be negative (see Solon, 2014). Similar findings have recently received a great

deal of attention in economics and other fields, in particular in sociological and demographic research.

However, we have shown in Section 1 that the coefficient on grandparents in such child-parent-grandparent

regressions has little meaning, as it will be positive under any process that generates excess persistence – such as

the latent factor model. To test if the coefficient is just an artefact of a Markovian transmission process, we add

the status of the mother as a control variable. If the positive grandparent coefficient reflects bias from omitting

relevant parental characteristics, then it should decrease substantially once we condition on both parents’ status

– or be zero when the grandparent coefficient only reflected correlation between the status of the grandfather

and the mother.

Indeed, this is what we observe for four of our five samples (see columns (3) to (5) in Table 6). For school-

ing variables in the LVS-1, BASE, and the two NEPS samples, it suffices to add information on education of

the mother to push the estimated coefficient on grandparents close to zero. The coefficients are either statistic-

ally insignificant, or turn insignificant if we add additional information on the occupational prestige of parents

(NEPS-2). We observe the same pattern for our wider measure of educational attainment and the occupational

prestige score, which remains robust also to the inclusion of interaction terms between the status of father and

grandfather.26 The association between grandparent and offspring outcomes appears therefore spurious in these
26We add educational instead of occupational attainment of the mother also in regressions using occupational prestige as the outcome

variable, since the occupational prestige score is less informative for females in the parent generation (see Section 2.3).
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four samples.27 Similar evidence against direct grandparental effects, presented by Warren and Hauser (1997)

using the Wisconsin Longitudinal Study, have been challenged with the argument that the influence of grandpar-

ents may vary with context (see Section 1.3). The fact that we do not find evidence for multigenerational causal

effects in four samples covering different cohorts in Germany suggests that the finding from the Wisconsin

sample is not an outlier.

In contrast, the estimated coefficient on grandparent status in the LVS-2 declines only modestly and remains

statistically significant when we control for maternal education (see Table 6). However, education is an im-

perfect measure of parental status, and our regression might miss other important parental control variables.

We therefore include parental wealth, residential property, occupational prestige, and income as additional con-

trols in the LVS-2 regression.28 These variables explain a significant share of the variability in child schooling.

However, while decreasing, the grandparent coefficient remains sizeable and statistically significant (see Panel

A of Table 7). This finding suggests that in the LVS-2 sample, the grandparent coefficient indeed represents

an independent statistical association that cannot be (fully) explained by the observed socio-economic status

of parents. This is in contrast to our other four samples, and provides support for Mare’s hypothesis that their

grandparent status matters in some populations and time periods. In fact, in additional regression, we find that

even within the LVS-2, the grandparent coefficient changes markedly over time: it is large for offspring born

shortly after World War II, and declines in later birth cohorts (Panel B of Table 7, first row). This decline is near

monotonic over cohort deciles, and remains robust to the inclusion of cohort dummies for each generation.29

But via which pathways might grandparent status matter? Mare (2011) lists various plausible mechanisms,

and Hertel and Groh-Samberg (2013) note that an independent causal link may occur also indirectly, for ex-

ample when the status of grandparents influences the reference point and decision making of grandchildren.

To distinguish between the importance of direct and indirect channels, we test whether the positive grandfather

coefficient is smaller for grandchildren whose grandfather died early. This is what we would expect if the pos-

itive grandfather coefficient would (partly) reflect the positive influence of grandchildren spending time with or
27In unreported regressions, we also find that the grandparent coefficient is generally much smaller if we include the observed status of

the biological child of the grandparent rather than its spouse–the child-in-law of the grandparent. We would expect to see this pattern if the
grandparent coefficient reflects correlation with parental outcomes, and the status correlation is stronger between the grandfather and his
child rather than between the grandfather and his child-in-law. This holds for example in the latent factor model with assortative mating, as
we discuss in Online Appendix C.3.

28Specifically, we include the occupational prestige score for both parents, a dummy for the ownership of residential property, and seven
dummies indicating the level of parental household wealth. We also include an income fixed effect, which we construct from the income
history of the index person by regressing the log average of the starting and final salary in job spells from age 20 onwards on a quadratic in
age, time fixed effects, and individual fixed effects. Alternative income definitions yield similar results.

29One possible explanation for this observation is that grandparent status mattered in those families in which financial and human capital
was scarce. This should apply, in particular, to young parents right after the war, and thus to the parent generation in the LVS-2 (who was
born around 1930). Importantly, higher education was still comparatively costly at that time: academic-track schools charged substantial
fees until about 1958, and means-tested financial support for university attendance was introduced only from 1969 onwards. In line with
that explanation, we also find the coefficient on grandfather status to be large only in LVS-2 families in which the educational, income, or
occupational status of parents is low (see Panel B of Table 7).
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receiving resources directly from their highly-educated grandparents.

Panel A of Table 8 reports results from LVS-2 regressions that add various measures of grandfather death

and interaction terms between grandfather death and parental and grandparental status to our child-father-

grandfather regression, controlling also for the birth year of the grandfather. As a measure of grandfather death,

the regression in column (1) uses a dummy that indicates whether the grandfather was already dead when the

grandchild was born (which is the case for 27.5% of all grandchildren in LVS-2). The interaction term between

grandfather death and grandparental schooling enters with the expected negative sign but the point estimate is

small and statistically insignificant. However, estimates in (1) will be biased if the time of death is correlated

with unobserved factors that in turn influence the intergenerational transmission coefficient. This seems likely

as early death is, in general, not random. In fact, we show in column (1) of Panel B of Table 8 that grandfathers

who die before the birth of their grandchildren are (perhaps surprisingly) more educated than grandparents who

die later–and are thus a selected group of individuals.

To at least partly account for such selectivity, regressions (2) to (4) use war-related measures of grandfather

death. The idea is simple: Many members of LVS-2’s grandfather generation, born on average around the

turn of the century, were deployed in World War II, and dying in the war is arguably less correlated with

unobserved factors than dying early in general. Consequently, regressions (2) and (3) use a dummy indicating

whether the grandfather died between 1939 and 1945 as a measure of grandfather death, and regression (4) a

dummy indicating whether the grandfather was killed in combat or was missing in action since World War II.30

Furthermore, regressions (3) and (4) restrict the sample to grandchildren of grandfathers who were absent from

home because of World War II or died in the war. Importantly, war death is not correlated with grandparental

schooling (see Panel B of Table 8). This suggests that the use of war-related measures of grandfather death

can at least partly alleviate the selection problem. The interaction term between war death and grandparental

schooling is negative in all three regressions but statistically insignificant.

A problem with the regressions in (2) to (4) is the small sample size–and the ensuing lack of variation in

the interaction term between war death and grandparental schooling. Overall, we have observations on 611

grandchildren whose grandfathers were absent or died in the war. Of those, only a little over a fifth lost their

grandfather in the war. Moreover, the large majority of individuals in the grandparent generation only completed

compulsory schooling. We are, therefore, left with little variation in our interaction term.

We address this problem in two ways. First, we use the fact that for the grandparent generation, there is
30The two indicators differ because a small number of grandfathers, for which we do not have information that they died in combat, still

died between 1939 and 1945. The first indicator treats these cases as war deaths, the second indicator as missings (as we cannot conclusively
decide whether they died of natural causes).
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considerably more variation in vocational and tertiary than in secondary education. We thus re-run specification

(4) using our broader measure of educational attainment to measure their status. The interaction term between

war death and grandparental education is again negative but now close to zero (see column (5) of Table 8).

Second, we re-estimate specifications (1) to (5) in an extended sample that, in addition to the LVS-2, also

contains the LVS-1. Unfortunately, we cannot estimate specifications (3) to (5) in the LVS-1, as it does not

contain information on war deployment of grandfathers. Therefore, we also add the third wave of the LVS to

the extended sample.31 Table 14 in the Online Appendix presents the results. They again show no evidence that

the grandfather coefficient is smaller for grandchildren whose grandfather died early.

Overall, we find strong evidence against grandparental effects for four of our five samples (LVS-1, BASE,

NEPS-1, and NEPS-2). We thus conclude that higher-order causal effects are generally not a key factor for ex-

plaining the less-than-geometric decay of socio-economic status across generations that we observe. However,

the association between grandfather status and child outcomes appears robust for post-war cohorts in the LVS-2.

Grandparent status in this sample matters even for grandchildren whose grandfather died early, providing evid-

ence for indirect mechanisms that do not require direct contacts between grandparents and their grandchildren.

5 Predicting Multigenerational Persistence: A Horse Race

The observation of a fourth generation in the BASE sample allows us to test the two models further. In Table

9, we compare the actual correlation coefficient across four generations with predictions that we derive from (i)

the iteration of parent-child measures, (ii) the latent factor model, and (iii) a second-order autoregressive model

with “grandparental effects”. As data on the first three generations alone are sufficient to identify the parameters

of these models (see Section 1), the fourth generation offers an opportunity to test their ability to fit the data.

We estimate each model on the same set of lineages and report bootstrapped standard errors.

The actual correlation across four generations in BASE is 0.164 (see row 1 of Table 9). The next two rows

show that the iteration of parent-child correlations substantially understates the longevity of inequality. It makes

little difference if we iterate parent-child correlations across the first three generations only (row 2) or across

all four generations (row 3), suggesting that the procedure’s failure to fit the data is not caused by abnormal

patterns in the last observed generation.

In contrast, the latent factor model (row 4) performs comparatively well. Its predicted correlation across

four generations, according to Section 1 computed as l̂ 3r̂2 = 0.144, is within 15% of the actual correlation.
31The LVS-3 surveys respondents who were born in 1939-1941, and contains exactly the same information as the LVS-2. We do not use

the LVS-3 in our main analysis, since the educational outcomes of the children generation are heavily censored. However, the LVS-3 still
seems useful for our analysis of grandparental causal effects, for which the overall degree of status persistence is less relevant.
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Row 5 illustrates that the grandparental effects model does less well. We estimate the standardised coefficients

in a regression of offspring on parent and grandparent education. The autocorrelation across four generations

in a second-order autoregressive process with coefficients bp and bgp equals (b 3
p +2bpbgp �bpb 2

gp)/(1�bgp).

With b̂p = 0.374 and b̂gp = 0.073, we obtain an autocorrelation of 0.112, underestimating the degree of long-run

persistence in our sample by about 30%. The simple latent factor model thus fits the data well and outperforms

the grandparental effect model. Of course, other models (see for example Solon, 2014) not tested here may

provide an even better characterisation of intergenerational processes.

6 Conclusions

This paper has presented direct evidence on the persistence of occupational status and educational attainment

across up to four generations in 19th and 20th century Germany. Consistent with recent evidence for Sweden,

we find that social mobility in Germany is substantially lower than estimates from two generations suggest.

We use our data to shed light on two theories of multigenerational transmission that have recently gained

a lot of attention. First, we address Gregory Clark’s hypotheses that the true rate of social mobility is low and

constant across countries and time, unaffected by the environment or policy. We show that multigenerational

data offer a direct path for identification of the latent factor model that is underlying these arguments, a path

that avoids some of the pitfalls that affect estimates from averaging outcomes within surname groups. Our

evidence suggests that the persistence in the latent factor is substantially higher than the parent-child correlation

in observed outcomes, but also that its rate varies over cohorts and is not as high as Clark suggests.

Second, we ask if an independent causal effect of grandparents may contribute to the observed longevity

of status inequality across generations. We show that the coefficient on grandparent status in a regression of

child status on parent and grandparent status has little meaning, as it will be positive for any process that gen-

erates persistence in excess of the rate implied by iterating two-generation measures. We find strong evidence

against “grandparental effects” for four of our five cohort groups, but also a robust positive association between

grandparent and children status for the fifth cohort. The positive association seems to operate through indirect

mechanisms, as we show by exploiting quasi-exogenous variation in the time of grandparents’ death.

Overall, therefore, we argue that the literature’s traditional focus on parent-child transmission, and neglect

of earlier ancestors, is not a significant obstacle for understanding the slow decline in multigenerational cor-

relations that we document in the data. In fact, the latent factor model, despite having a memory of just one

generation, can also account for the added persistence, and does a better job in predicting our data on the per-
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sistence in educational attainment across four generations than the grandparental effects model. However, our

evidence speaks against a deterministic view of social mobility. The degree of inter- and multigenerational per-

sistence in socio-economic status is surprisingly similar across our five samples, but still sufficiently different

to suggest that the parameters of the latent factor model are not constant over time and space.

At a more general level, our paper illustrates how the increased availability of multigenerational data

provides an opportunity to assess theoretical hypotheses on the transmission of inequality across generations.

Such data cannot only be used to identify models of inter- and multigenerational mobility, but also to test their

ability to explain the persistence of socio-economic inequality over long time horizons.

University of St Andrews and Kiel Institute for the World Economy

Universidad Carlos III de Madrid, Swedish Institute for Social Research, and Institute for the Study of Labor
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Tables and Figures

Table 1: Sample Statistics

birth	year occupational #	individuals #	lineages
secondary w/	vocational prestige 3/4	generations	

LVS-1
				Grandparents 1889 8.32	(0.88) 9.57	(0.78) 55.86	(0.71) 2824 2515	/	555
				Parents 1920 8.77	(1.00) 10.33	(1.00) 66.67	(0.99) 1412
				Children 1950 9.80	(0.94) 12.41	(0.91) 69.04	(0.85) 2871
LVS-2
				Grandparents 1900 8.34	(0.95) 9.55	(0.90) - 1416 1456	/	-
				Parents 1930 8.56	(1.00) 9.95	(1.00) - 708
				Children 1959 9.84	(0.94) 11.92	(0.74) - 1577
BASE
				Grandparents 1876 8.70	(0.41) - 54.66	(0.60) 1032 551	/	463
				Parents 1906 8.73	(1.00) - 70.64	(0.98) 516
				Children 1939 9.96	(0.88) - 72.72	(0.84) 741
				Grandchildren 1969 10.82	(0.68) - - 898
NEPS-1
				Grandparents 1916 8.73	(0.89) 10.71	(0.94) 46.88	(0.85) 3886 2884	/	-
				Parents 1947 9.92	(0.93) 13.03	(1.00) 97.08	(1.00) 1943
				Children 1975 11.18	(0.98) 14.31	(0.92) - 3090
NEPS-2
				Grandparents 1922 8.73	(0.91) 10.78	(0.95) 50.29	(0.86) 4288 3263	/	-
				Parents 1952 10.13	(0.96) 13.21	(1.00) 96.51	(1.00) 2144
				Children 1981 11.17	(0.98) 13.99	(0.81) - 3497

schooling	in	years

Note: The table reports sample means of birth year, educational attainment with and without vocational training, and occupational prestige, along with the
number of observations across samples. The number in brackets is the share of non-missing observations in the respective outcome. The last column reports
the number of lineages for whom education data are available in each of three or four consecutive generations.
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Table 2: Regression Coefficient over Three Generations
Predicted

G1-G2 G2-G3 G1-G3 G1-G3 N

Panel	A:	Schooling
			LVS-1 0.709 0.563 0.434 0.399 2383

(0.048) (0.032) (0.050) (0.036)
			LVS-2 0.460 0.629 0.483 0.290 1389

(0.066) (0.039) (0.056) (0.044)
			BASE 0.468 0.547 0.342 0.256 547

(0.101) (0.062) (0.074) (0.061)
			NEPS-1 0.416 0.366 0.242 0.152 2508

(0.033) (0.022) (0.023) (0.016)
			NEPS-2 0.468 0.381 0.268 0.178 2934

(0.027) (0.021) (0.022) (0.015)

Panel	B:	Schooling	w/	vocational
			LVS-1 0.550 0.518 0.401 0.285 1869

(0.039) (0.033) (0.046) (0.028)
			NEPS-1 0.398 0.342 0.195 0.136 2574

(0.029) (0.023) (0.025) (0.014)

Panel	C:	Occupational	Prestige
			LVS-1 0.533 0.414 0.340 0.221 2261a

(0.079) (0.028) (0.041) (0.037)
			BASE 0.670 0.378 0.315 0.254 542b

(0.120) (0.052) (0.060) (0.060)

Actual

Note: Balanced sample, using complete lineages in which the respective outcome is observed for individuals in all three generations. Standard errors clustered
on family level in parentheses. aOnly 929 observations for G2-G1 regression. bOnly 313 observations for G2-G1 regression.
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Table 3: Correlation Coefficient over Three Generations

Predicted
G1-G2 G2-G3 G1-G3 G1-G3 N

Panel	A:	Schooling
			LVS-1 0.549 0.387 0.231 0.213 2383

(0.042) (0.026) (0.028) (0.022)
			LVS-2 0.432 0.406 0.293 0.175 1389

(0.062) (0.026) (0.034) (0.028)
			BASE 0.467 0.400 0.249 0.187 547

(0.079) (0.050) (0.050) (0.039)
			NEPS-1 0.372 0.384 0.226 0.143 2508

(0.0302) (0.0215) (0.0206) (0.0140)
			NEPS-2 0.425 0.399 0.255 0.170 2934

(0.0235) (0.0209) (0.0193) (0.013)

Panel	B:	Schooling	w/	vocational
			LVS-1 0.483 0.400 0.272 0.193 1869

(0.036) (0.028) (0.031) (0.019)
			NEPS-1 0.392 0.349 0.196 0.137 2574

(0.027) (0.022) (0.026) (0.013)

Panel	C:	Occupational	Prestige
			LVS-1 0.368 0.396 0.250 0.146 2261a

(0.037) (0.024) (0.030) (0.017)
			BASE 0.456 0.394 0.257 0.180 542b

(0.088) (0.045) (0.049) (0.041)

Actual

Note: Estimates of the Pearson correlation coefficient. Balanced sample, using complete lineages in which the respective outcome is observed for individuals
in all three generations. Bootstrapped standard errors clustered on family level in parentheses. aOnly 929 observations for G2-G1 regression. bOnly 313
observations for G2-G1 regression.

Table 4: Regression and Correlation Coefficient over Four Generations

Actual Predicted Actual Predicted Actual Predicted

Regression	Coefficients:
0.446 0.501 0.479 0.344 0.223 0.361 0.240 0.207 0.107
(0.057) (0.050) (0.049) (0.070) (0.037) (0.048) (0.037) (0.067) (0.022)

Correlation	Coefficients:
0.486 0.403 0.463 0.257 0.192 0.288 0.181 0.164 0.0871
(0.054) (0.041) (0.049) (0.049) (0.028) (0.039) (0.028) (0.048) (0.016)

N=413 N=1262 N=516 N=553 N=1025 N=470

2	Generations 3	Generations 4	Generations
G1-G3 G2-G4G1-G2 G2-G3 G3-G4 G1-G4

Note: Unbalanced sample from BASE, using all available observations. Bootstrapped standard errors clustered on family level in parentheses.
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Table 5: Parameter Estimates of the Latent Factor Model

(1) (2) (3) (4) (5)

β‐1 β‐2 λ ρ λA    

Panel A: Schooling
   LVS‐1 0.468 0.231 0.494 0.974 0.421

(0.026) (0.027) (0.044) (0.045) (0.043)

   LVS‐2 0.419 0.293 0.699 0.774 0.677

(0.033) (0.032) (0.072) (0.057) (0.097)

   BASE 0.434 0.249 0.574 0.869 0.534

(0.047) (0.078) (0.095) (0.085) (0.108)

   NEPS‐1 0.378 0.226 0.598 0.795 0.609

(0.020) (0.022) (0.054) (0.044) (0.065)

   NEPS‐2 0.412 0.255 0.619 0.816 0.600

(0.017) (0.021) (0.042) (0.032) (0.045)

Panel B: Schooling w/ vocational
   LVS‐1 0.442 0.272 0.616 0.847 0.563

(0.023) (0.032) (0.058) (0.043) (0.060)

   NEPS‐1 0.370 0.196 0.530 0.836 0.501

(0.019) (0.024) (0.058) (0.049) (0.059)

Panel C: Occupational Prestige
   LVS‐1 0.382 0.250 0.654 0.764 0.681

(0.033) (0.027) (0.072) (0.062) (0.125)
   BASE 0.425 0.257 0.605 0.838 0.564

(0.058) (0.051) (0.126) (0.115) (0.187)

Panel D: Evidence from Sweden (Lindahl et al., 2015)
   Schooling 0.353 0.216 0.611 0.760
   Earnings 0.288 0.141 0.490 0.767

Table 5: Parameter Estimates for the Latent Factor Model

Note: β‐1 and β‐2 are correlation coefficients. Estimates for Germany are 
taken from Table 3. The values for Sweden are taken from Tables 2 and 4 
of Lindahl et al. (2015). Bootstrapped standard errors clustered on family 
level in parantheses.

Notes: b-1 and b-2 are correlation coefficients. Estimates for Germany are from Table 3. Column (3) reports estimates for l based on average intergenerational
correlations, whereas column (5) reports estimates based on the intergenerational correlation between G1 and G2 only. The values for Sweden are taken from
Tables 2 and 4 of Lindahl et al. (2015). Bootstrapped standard errors clustered on family level in parentheses.



Table 6: The Grandparent Coefficient
(1) (2) (3) (4) (5)

Grandfather Father Grandfather Father Mother N

Panel	A:	Schooling
			LVS-1 0.128** 0.459*** -0.020 0.319*** 0.412*** 2096

(0.046) (0.034) (0.046) (0.036) (0.042)

			LVS-2 0.247*** 0.516*** 0.184** 0.422*** 0.255*** 1349
(0.057) (0.041) (0.060) (0.049) (0.066)

			BASE 0.095 0.422*** 0.024 0.299*** 0.329*** 528
(0.075) (0.071) (0.071) (0.081) (0.097)

			NEPS-1 0.073** 0.326*** 0.043 0.235*** 0.198*** 2192
(0.026) (0.023) (0.024) (0.025) (0.025)

			NEPS-2 0.120*** 0.319*** 0.0477* 0.204*** 0.278*** 2669
(0.023) (0.022) (0.022) (0.023) (0.024)

Panel	B:	Schooling	w/	vocational
			LVS-1 0.099* 0.500*** 0.001 0.401*** 0.306*** 1446

(0.050) (0.036) (0.049) (0.040) (0.044)

			NEPS-1 0.032 0.349*** 0.005 0.270*** 0.168*** 2258
(0.025) (0.023) (0.025) (0.026) (0.029)

Panel	C:	Occupational	Prestige
			LVS-1 0.187*** 0.381*** 0.074 0.266*** 3.150***a 2007

(0.044) (0.032) (0.047) (0.035) (0.877)

			BASE 0.130* 0.323*** 0.028 0.165** 1.429a 512
(0.062) (0.058) (0.059) (0.057) (1.462)

w/	Motherw/o	Mother

Note: Balanced sample, using complete lineages in which all control variables are observed. Columns (1) and (2) report estimates from a regression of
offspring status on father and grandfather status. Columns (3)-(5) add the respective maternal status (Panel A and B) or paternal and maternal schooling (Panel
C). Standard errors are clustered on family level. * p<0.05, ** p<0.01, *** p<0.001. a Coefficient on maternal schooling (without vocational training).
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Table 7: Additional Evidence on the Grandparent Coefficient, LVS-2

Panel A: Coefficient Robustness

Grandfather coef. 0.247*** 0.184** 0.130*

(0.057) (0.060) (0.058)

maternal education ‐ x x

income, occ. prestige, wealth ‐ ‐ x

Panel B: Coefficient Heterogeneity
yes no

early birth cohort 0.282*** 0.081

(0.079) (0.069)

low education (father) 0.334* 0.017

(0.135) (0.051)

low income (respondent) 0.453*** 0.071

(0.114) (0.057)

low occ. prestige (father) 0.258 0.126

(0.163) (0.066)

Why no corresponding pattern in LVS‐1? . tab schuljah

Schuljahre 
des Vaters 
(ohne Uni)     

8         243

Note: wohneigentum grosseltern also has positive coefficient
Note: continuous interactions have similar sign and size, but are harder t
Note: simlar results when incluing all prestige and wealth variables as con
Note: Could do same for university attendance of G3 in second column, b

Table 7: Additional Evidence on the Grandparent Coefficient in the LVS‐2

Note: Panel A reports the robustness of the grandfather coefficient in the 
LVS‐2 as reported in Table XXX to the inclusion of further control variables. 
Panel B studies its heterogeneity over birth cohorts and with respect to the 
socio‐economic status of parents. We distinguish father with only minimum 
(8 years) schooling, respondents with income fixed effect below the 25th 
percentile, fathers with occupational prestige score below the 25th 
percentile, and G3 birth cohorts below the 50th percentile. Standard errors 
clustered on family level in parentheses, * p<0.05, ** p<0.01, *** p<0.001. 

Note: Panel A reports the robustness of the grandfather coefficient in the LVS-2 as reported in Table 6 to the inclusion of further control variables. Panel B
studies its heterogeneity over birth cohorts and with respect to the socio-economic status of parents. We distinguish G3 birth cohorts below the 50th percentile,
fathers with only minimum (8 years) schooling, respondents with income fixed effect below the 25th percentile, and fathers with occupational prestige score
below the 25th percentile. Standard errors clustered on family level in parentheses, * p<0.05, ** p<0.01, *** p<0.001.
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Table 8: Variation in the Grandparent Coefficient by Grandparent Survival, LVS-2Table	8:	Variation	in	the	Grandparent	Coefficient	by	Grandparent	Survival,	LVS-2
Panel	A

(1) (2) (3) (4) (5)
Indicator	grandfather	death At	birth B/w	1939-45 B/w	1939-45 War	death War	death
Conditional	on	absence/death	during	WWII? No No Yes Yes Yes
Schooling
			Grandfather 0.270*** 0.252*** 0.225*** 0.223*** 0.152***

(0.062) (0.055) (0.075) (0.076) (0.048)
				×	Grandfather	death -0.048 -0.075 -0.046 -0.114 -0.015

(0.117) (0.224) (0.231) (0.272) (0.166)
			Father 0.506*** 0.499*** 0.423*** 0.404*** 0.379***

(0.046) (0.044) (0.074) (0.076) (0.077)
				×	Grandfather	death -0.001 0.066 0.143 0.711 0.670

(0.090) (0.118) (0.133) (0.608) (0.523)
Grandfather	death 0.180 -0.184 -1.184 -4.993 -5.542

(0.826) (1.593) (1.668) (3.810) (3.472)
Panel	B

(1) (2) (3) (4) (5)
Indicator	grandfather	death
			At	birth 0.254*

(0.140)
			B/w	1939-45 0.075 -0.197

(0.204) (0.240)
			War	death 0.140 -0.025

(0.409) (0.747)
#	obs. 1317 1317 611 532 515

Schooling	Child	(G3)

Schooling	Grandfather	(G1)

Note:		Panel	A	reports	estimates	from	a	regression	of	child	schooling	on	father	and	grandfather	schooling.	All	regressions	in	Panel	A	include	a	dummy	for	grandfather	death,	interaction	
terms	between	grandfather	death	and	father/grandfather	schooling,	and	a		quadratic	polynomial	in	the	(hypothetical)	age	of	the	grandfather	in	1988.	Panel	B	reports	estimate	from	a	
regression	of	grandfather	schooling	on	an	indicator	of	grandfather	death	and	a	quadratic	polynomial	in	the	(hypothetical)	age	of	the	grandfather	in	1988.	As	an	indicator	for	grandfather	
death,	model	(1)	in	Panels	A	and	B	uses	a		dummy	indicating	whether	the	grandfather	was	already	dead	when	his	grandchild	was	born,	regressions	(2)	and	(3)		a	dummy	indicating	
whether	the	grandfather	died	between	1939	and	1945,	and	regressions	in	(4)	and	(5)		a	dummy	indicating	whether	the	grandfather	was	killed	during	World	War	II	or	was	missing	in	
action	since	then.	Regressions	(3)	to	(5)	restrict	the	sample	to	observations	from	G3	whose	grandfather	was	absent	because	of	World	War	II	or	died	in	the	war.		Regression	(5)	uses	
schooling	with	vocational	training	instead	of	just	schooling	as	the	education	variable	of	the	grandfather.	Standard	errors	are	clustered	on	family	level.

Notes: Panel A reports estimates from a regression of child schooling on father and grandfather schooling. All regressions in Panel A include a dummy for
grandfather death, interaction terms between grandfather death and father/grandfather schooling, and a quadratic polynomial in the (hypothetical) age of the
grandfather in 1988. Panel B reports estimates from a regression of grandfather schooling on an indicator of grandfather death and a quadratic polynomial in
the (hypothetical) age of the grandfather in 1988. As an indicator for grandfather death, regression (1) uses a dummy indicating whether the grandfather was
already dead when his grandchild was born, regressions (2) and (3) a dummy indicating whether the grandfather died between 1939 and 1945, and regressions
(4) and (5) a dummy indicating whether the grandfather was killed during World War II or was missing in action since then. Regressions (3) to (5) restrict
the sample to observations from G3 whose grandfather was absent because of World War II or died in the war. Regression (5) uses schooling with vocational
training instead of just schooling as the education variable of the grandfather. Standard errors clustered on family level in parentheses, * p<0.10, *** p<0.01.

Table 9: Predictions of the Correlation Coefficient across Four Generations

coefficient deviation	
Actual	 Four	Generations 0.164

(0.053)

Predictions Iterativea 0.081 -50.7%
(0.030)

Iterative,	Four	Generationsb	 0.085 -48.4%
(0.023)

Latent	Factor	Modela 0.144 -12.7%
(0.049)

Grandparent	Effectsa 0.112 -31.6%
(0.041)

	#	obs	(G1-G3) 547

schooling	(BASE)

Note: Estimates of the Pearson correlation coefficient in the BASE sample. aPrediction based on complete lineages across the first three generations. bPrediction
based on complete lineages across first three plus unbalanced fourth generation. Standard errors are bootstrapped on family level.
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Figure 1: Samples and Generations
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Note: For each generation and sample, the Figure plots the inner quartile range (25th and 75th percentiles), with the 10th, 50th and 90th percentiles indicated
by additional vertical bars. Spouses of index persons not included.

Figure 2: Predictions from the Iterated Regression vs. Latent Factor Model
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Note: The Figure plots (i) the observed correlation in educational attainment (with vocational training) across two and three generation and the predicted
correlations according to (ii) the iteration of the average two-generation correlation (solid line); (iii) the latent factor model, identified from individual-level
data (dashed line, l̂ = 0.616); and (iv) Clark’s hypothesis (short-dashed line, l = 0.75).
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A Measurement error and recall bias

To assess the consequences of response errors, let reported status ỹi,t relate to actual status yi,t according to

ỹi,t = yi,t + ei,t . (15)

We allow for the variance of the response error ei,t to vary across generations, but assume that errors are uncor-

related with true status (“classical” measurement error). As our analysis of Clark’s latent factor model is based

on correlation coefficients, we standardise the variance of yi,t to one.

The correlation between the observed (with error) status of any two generations then identifies

Cor(ỹt , ỹt�m) =
Cov(ỹt , ỹt�m)p

Var(ỹt)
p

Var(ỹt�m)
= l mr2rrt,t�m, (16)

where

rrt,t�m =
1p

(1+Var(et))

1p
(1+Var(et�m))

depends on the response errors in the respective generations. We are underestimating the correlation in education

or occupations across generations in the presence of measurement error (if rrt,t�m < 1).

Our baseline estimate of l , as reported in column (3) of Table 5, is based on both two-generation correla-

tions, Cor(ỹt , ỹt�1) and Cor(ỹt�1, ỹt�2), that we observe in our three generation data:

Cor(ỹt , ỹt�2)
1
2Cor(ỹt , ỹt�1)+

1
2Cor(ỹt�1, ỹt�2)

= l
rrt,t�2

1
2 (rrt,t�1 + rrt�1,t�2)

. (17)

The estimate is thus consistent if the variance of the response error is stable across generations (so that rrt,t�1 =

rrt�1,t�2 = rrt,t�2). However, respondents in the parent generation t �1 may know their own and their child’s

education, yi,t�1 and yi,t , but have less precise knowledge of their parent’s education yi,t�2 (as they do not directly

observe the educational careers of their parents). In this case, 1
2 (rrt,t�1 + rrt�1,t�2)> rrt,t�2 and estimates based

on equation (17) are downward biased. An alternative estimator, reported in column (5) of Table 5, is given by

lA =
Cor(ỹt , ỹt�2)

Cor(ỹt�1, ỹt�2)
= l

rrt,t�2

rrt�1,t�2
. (18)

It is based on fewer moments but consistently estimates l as long as the response errors in the parent generation

t�1 and child generation t�2 have equal variance. This assumption is plausible, since respondents can directly

observe attainment in these generations, such that the errors should be small in both cases. Note that we could
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abstract entirely from measurement error by estimating l from regression instead of correlation coefficients (i.e.,

from the regression of yt on yt�1, instrumented by yt�2). However, correlation coefficients have the important

advantage of being robust to proportional shifts in the variance of status across generations (see Appendix B).

B The latent factor model with time-varying coefficients

Consider a generalisation of the latent factor model with time-varying coefficients, assuming that

yi,t = dt (rt ei,t +ui,t) (19)

ei,t = gt (lt ei,t�1 + vi,t) , (20)

where Var(ui,t) = (1� r2
t )Var(ei,t) and Var(vi,t) = (1� l 2

t )Var(ei,t�1). The parameters dt and gt allow for

changes in the variances of yi,t and ei,t , while rt and lt reflect the relative importance of their deterministic

and stochastic components. The coefficient in a regression of child status in generation t on parent status in

generation t �1 equals then
Cov(yt ,yt�1)

Var(yt�1)
=

dt

dt�1
gtrtrt�1lt , (21)

while the correlation coefficient equals

Cor(yt ,yt�1) =
Cov(yt ,yt�1)p

Var(yt)
p

Var(yt�1)
= rtrt�1lt . (22)

Consistent with Hertz et al. (2008), we find substantial variation in the regression coefficient while the correla-

tion is comparatively stable across samples and generations. We can thus abstract from an important source of

time variation by considering the latter.

In this more general model, the ratios between three- and each of the two-generational correlations identify

lA =
Cor(y1,y3)

Cor(y2,y3)
=

r1

r2
l2 (23)

lB =
Cor(y1,y3)

Cor(y1,y2)
=

r3

r2
l3, (24)

and the ratio between the three- and the average two-generational correlations identifies

l̄ =
Cor(y1,y3)

1
2Cor(y1,y2)+

1
2Cor(y2,y3)

⇡
1
2 (r1 +r3)

r2

1
2
(l2 +l3) , (25)
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where we now use, for simplicity, subscripts 1, 2, 3 to refer to generation G1, G2, and G3, respectively. We

report estimates of l̄ as our baseline in Section 4. Estimates of lA, which are more robust to plausible forms of

measurement error (see Appendix A), are reported in column (5) of Table 5.

Equations (23) to (25) illustrate that our estimates of the heritability parameter l can be down- or upward

biased if the correlation between the latent factor and observed status r changes across generations. In particu-

lar, we may underestimate l if rt is exceptionally high in our index generation G2. A number of observations

address this concern. First, our arguments are based on five distinct samples, comprising cohorts born in dif-

ferent times, and multiple status measures. It seems unlikely that r2 is substantially larger than 1
2 (r1 +r3) in

each case. In fact, r2 may have been comparatively low in the LVS-2, since educational and vocational careers

of cohorts born 1929-31 were directly interrupted by World War II and the post-war displacement of ethnic

Germans from the former eastern territories of Germany. Second, even with time-varying coefficients we can

point identify one of the heritability parameters if four generations are observed, as

lC =

s
Cor(y1,y3)Cor(y2,y4)

Cor(y1,y2)Cor(y3,y4)
=

s
(r1r3l2l3)(r2r4l3l4)

(r1r2l2)(r3r4l4)
= l3 (26)

lD =

s
Cor(y1,y4)Cor(y2,y3)

Cor(y1,y2)Cor(y3,y4)
=

s
(r1r4l2l3l4)(r2r3l3)

(r1r2l2)(r3r4l4)
= l3. (27)

Estimating these expressions using four generations of educational attainment in the BASE sample, we find

l̂C = 0.617 (bootstrapped s.e. 0.088) and l̂D = 0.546 (s.e. 0.106). These estimates are of similar magnitude to

those reported in Table 5, and the null hypothesis l = 0.75 can still be rejected on the 10% level.

Clark’s second hypothesis, that the heritability of the latent factor is constant across time (lt = l 8t) and

space is more difficult to assess. A latent factor model with constant coefficients (lt = l and rt = r 8t), as

posited in Clark and Cummins (2014), can be rejected from the evidence summarised in Table 5. However, equa-

tions (23) to (25) illustrate that differences in l̂ can also be due to differential trends of rt across generations.

Two observations suggest that variation only in rt is unlikely to explain our results. First, the observed differ-

ences in l̂ across samples are large, and thus consistent with the hypothesis lt = l only if rt varies strongly

across generations. Second, the variation in rt would need to be of peculiar form to explain the contrast in the

estimated autocorrelations in schooling between the LVS-1 and LVS-2. The three-generation estimate b̂�2 is

larger but the two-generation estimates b̂�1 are smaller in the LVS-2. Without variation in lt , this contrast can

be rationalised only if r1 and r3 are large, but r2 particularly small in the LVS-2. While possible, we deem such

pattern less likely than the alternative explanation, that lt is not constant over time.
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ONLINE APPENDIX–NOT FOR PUBLICATION

C Theory

C.1 The grandparent coefficient under non-stationarity

Proposition: In a multivariate regression of child outcome yt on parent outcome yt�1 and grandparent outcome

yt�2, the coefficient on the latter is positive if and only if the iteration of parent-child coefficients understates

the observed persistence across three generations.

Without assuming stationarity, the grandparent coefficient equals (Frisch-Waugh-Lovell theorem)

bgp =
Cov(yt , ỹt�2)

Var(ỹt�2)
, (28)

where ỹt�2 is the residual from regressing yt�2 on yt�1. As such we have

ỹt�2 = yt�2 �
Cov(yt�1,yt�2)

Var(yt�1)
yt�1

and we can write

bgp =

✓
Cov(yt ,yt�2)

Var(yt�2)
� Cov(yt�1,yt�2)

Var(yt�1)

Cov(yt ,yt�1)

Var(yt�2)

◆
Var(yt�2)

Var(ỹt�2)
=
�
b�2 �b gp!p

�1 b p!c
�1

�Var(yt�2)

Var(ỹt�2)
, (29)

where b gp!p
�1 and b p!c

�1 are the two-generational slope coefficient in a regression of parent on grandparent, or

child on parent outcome, respectively. We have bgp > 0 if and only if b�2 > b gp!p
�1 b p!c

�1 .

C.2 The grandparent coefficient in a latent factor model with multiple status measures

Assume that multiple distinct outcomes {yi1,t�1,yi2,t�1, ...} of offspring in family i in generation t are determ-

ined by

yi j,t = rei,t +ui j,t 8 j (30)

ei,t = lei,t�1 + vi,t , (31)

where the noise terms are uncorrelated with each other and past values. The variances of the outcomes and

the latent variable ei,t are normalised to one. Suppressing the i subscript, the grandparent coefficient bgp in the
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multivariate child-parent-grandparent regression

yt = bpy1,t�1 +bgpyt�2 + et

equals bgp = Cov(yt , ỹt�2)/Var(ỹt�2), where ỹt�2 is the residual from regressing yt�2 on y1,t�1 . The slope

coefficient in this auxiliary regression equals b = r2l , such that substituting for ỹt�2 = yt�2 �by1,t�1 yields

bgp =
Cov(yt ,yt�2)�bCov(yt ,y1,t�1)

Var(yt�2 �by1,t�1)
=

r2l 2 �r4l 2

1�r4l 2 .

Similarly, the grandparent coefficient bgp in the regression

yt = b1,py1,t�1 +b2,py2,t�1 +b 0
gpy1,t�2 + et

equals b 0
gp =Cov(yt , ỹ0t�2)/Var(ỹ0t�2), where ỹ0t�2 is the residual from regressing yt�2 on y1,t�1 and y2,t�1. From

equation (30), the two slope coefficients in this auxiliary regression are identical and given by b̃ = r2l/(1+r2).

Substituting for ỹ0t�2 = yt�2 � b̃ (y1,t�1 + y2,t�1), we thus have

b 0
gp =

Cov(yt ,yt�2)� b̃Cov(yt ,y1,t�1 + y2,t�1)

Var(yt�2)+ b̃ 2Var(y1,t�1 + y2,t�1)�2b̃Cov(yt�2,y1,t�1 + y2,t�1)
=

r2l 2 �r4l 2

1�r4l 2 +r2(1�r2l 2)
,

and b 0
gp < bgp if 0 < r < 1, i.e., if observed status is an imperfect measure of the underlying latent factor.

C.3 The grandparent coefficient in a latent factor model with assortative mating

Assume that endowments are determined by the average of father’s and mother’s endowment

yi,t = rei,t +ui,t (32)

ei,t = l̃ ēi,t�1 + vi,t , (33)

with ēi,t�1 = (em
i,t�1 + ep

i,t�1)/2, and where the m and p supercripts denote maternal and paternal variables.

Moreover, assume that parents match based on their latent factors,

em
i,t�1 = mep

i,t�1 +wi,t�1 (34)

with m =Cov(em
i,t�1,e

p
i,t�1).
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Own lineage. The grandparent coefficient in a regression of offspring status on parent and grandparent

status from the same lineage (i.e., father and paternal grandparent, or mother and maternal grandparent)

yt = bpyx
t�1 +bgpyx,y

t�2 + et for x = {m, p}, y = {m, p} (35)

equals bgp =Cov(yt , ỹt�2)/Var(ỹt�2), where ỹt�2 is the residual from regressing yx,y
t�2 on yx

t�1. The slope coef-

ficient in this auxiliary regression equals b = r2l (see Section 1.2), where l is given by equation (9), and

therefore

bgp =
r2l 2 �r4l 2

1�r4l 2 . (36)

Different lineages. The grandparent coefficient in a regression of offspring status on parent and grandparent

status from different lineages (i.e., father and maternal grandparent, or mother and paternal grandparent),

yt = b 0
pyx

t�1 +b 0
gpyy,z

t�2 + et for x = {m, p}, y 6= x, and z = {m, p} (37)

equals b 0
gp =Cov(yt , ỹ

y,z
t�2)/Var(ỹy,z

t�2), where ỹy,z
t�2 is the residual from regressing yy,z

t�2 on yx
t�1. The slope coef-

ficient in this auxiliary regression equals b = mr2l (see Section 1.2), such that

b 0
gp =

r2l 2 �mr4l 2

1�m2r4l 2 . (38)

We have that b 0
gp > bgp if status is imperfectly correlated with underlying endowments (0 < r < 1), assortative

mating is imperfect (0  m < 1), and intergenerational transmission is non-zero (0 < l  1).

Both parents. The grandparent coefficient in a regression on the status of grandparent and both parents,

yt = bxyx
t�1 +byyy

t�1 +b 00
gpyx,z

t�2 + et for x = {m, p}, y = {m, p}, x 6= yand z = {m, p}, (39)

equals b 00
gp = Cov(yt , ỹ

x,z
t�2)/Var(ỹx,z

t�2), where ỹx,z
t�2 is the residual from regressing yx,z

t�2 on yx
t�1 and yy

t�1. The

slope coefficient in this auxiliary regression can be shown to equal
�
r2l �m2r4l

�
/
�
1�m2r4� on yx

t�1 and
�
mr2l �mr4l

�
/
�
1�m2r4� on yy

t�1. After simplification, we have

b 00
gp =

r2l 2(r2 �1)(mr2 �1)
1�m2r4 +r4l 2 (m2(2r2 �1)�1)

(40)

where b 00
gp < b 0

gp if 0 < r < 1, 0  m  1, and 0 < l  1.
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D Data

D.1 Educational attainment

The data sets generally provide the highest school degree and the highest vocational training degrees that an

individual has obtained (if any). From this information, we calculate years of schooling as the minimum lengths

of time required to earn a given school degree. So as to obtain our measure of total years of education, we further

add the minimum years required to complete a given vocational training degree to the years spent in school.

Table 10 shows the minimum time lengths that we use to calculate our education measures (taken mainly from

Müller, 1979). In our analysis of the NEPS, we directly use the variable on years of education provided in the

data set. This variable is again based on an individual’s highest school and vocational training degrees. We

adjust the NEPS education variable to our mapping in Table 10 by recoding the minimum years of education

from nine to eight years and, hence, abstract from the introduction of a compulsory 9th grade after World War

II. Our results in Sections 3 and 4 remain nearly identical if we do not adjust the NEPS education variable.

Table 10: Minimum lengths of time required to earn a given degree
Degree Minimum time length
School Degree
No completed school degree 8 years
Sonderschulabschluss (special needs school) 8 years
Volks-/Hauptschulabschluss (low school track) 8 years
Mittlere Reife (medium school track) 10 years
Fachhochschulreife (high school track) 12 years
Abitur (high school track) 13 years
Vocational Training Degree
No vocational degree 0 years
Agricultural or household apprenticeship 2 years
Industrial apprenticeship 2 years
Vocational school degree 2 years
Commercial apprenticeship 3 years
Master craftsman 4 years
University of applied sciences degree 4 years
University degree 5 years
Other vocational training degree 2 years

D.2 Occupational status

Our indicator for occupational status is the maximum occupational prestige score of an individual that we

observe in the data. The data sets record the prestige score for the different groups of family members at

multiple but different points of their life cycles, as shown in Table 11 for the LVS-1 and BASE data.
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Table 11: Points of the life cycle at which occupational status is recorded

Generation Relation to index person LVS-1 BASE

First Father Occupation learned;
occupation when index

person was 15 years old;
last occupation before

retirement or death

Occupation when index
person was 15 years old

Mother Occupation learned; main
occupation until index

person was 16 years old

Occupation learned

Second Index person Entire occupation history Entire occupation history
Spouse Occupation learned;

occupation before marriage;
occupation during marriage;

current occupation (entire
occupation history)a

Occupation learned;
occupation before marriage;
occupation during marriage;

current occupation (entire
occupation history)

Third Children Main occupation Main occupation
Notes: aThe LVS-1 contains data on the entire occupation history of the spouses of those 407 index persons who were surveyed using

face-to-face interviews.

D.3 Linking spouses and children

The data sets generally records information on the current spouse or partner of the index person and on all

previous spouses (but not on previous partners with whom the index person was not married). Information

include the birth year, educational attainment, occupational status and period of marriage or partnership.32

However, the data sets do not identify a specific spouse as the parent of a specific child of the index person. We

link spouses to children according to the following set of rules (which we apply one after the other):

1. If an index person has only one spouse, we identify this spouse as the parent of all children of the index

person.

2. If an index has more than one spouse, we identify that spouse (partner) as the parent of a child with which

the index person was married (in a partnership) at the time of birth.

3. If an index has two (three) spouses, we identify the first spouse as the parent of a child if the child was

born before the first marriage. We identify the second (third) spouse as the parent of a child if the child

was born after the index person broke up with the first (second) spouse but before she or he broke up with

the second (third) spouse.

We cannot link spouses and children if a) the index person has more than one spouse and b) the birth year of a

child is missing.
32The LVS-1 does not contain information on the educational attainment or occupational status of previous spouses.
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D.4 Lineages

Table 12: Variation in Educational Attainment and Mobility with Family Size
#"children

none one" multiple
schooling)/w)vocational
""""mean"parents 8.66 8.47 8.36

(0.125) (0.069) (0.040)
""""mean"respondents 9.21 8.71 8.70

(0.133) (0.069) (0.052)
"""intergenerational"coef. 0.44 0.46 0.68

(0.088) (0.072) (0.062)
#"obs. 145 336 772

Note: The table reports, separately for respondents in the LVS-1 with no, one or multiple children, the mean years of schooling (with university and vocational
training) of the respondents, the mean schooling of their parents, and the intergenerational coefficient from a regression of the former on the latter.

Figure 3: A Hypothetical Family Tree Across Four Generations

!Generation!1

!Generation!2

!Generation!3

!Generation!4

P"In"

C1" C2" C3"

GC1" GC2" GC3"

S"

C1P" C2P"

P1" P2"

Note: The Figure depicts a hypothetical family tree across four generations: Parents ("Px"), Index ("I") and their partner ("P") and siblings ("S"), children ("Cx")
and their partners ("CxP"), and grandchildren ("GCx"). Direct ancestors of the first generation are depicted by squares, their partners by circles. Educational
status of members with dashed lines are unobserved in our samples. Complete four-generational lineages in bold.
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E Matrilineal and Patrilineal Lineages

Table 13: Status Correlation Between First and Third Generation

Actual Predicted N Actual Predicted N

Panel	A:	Schooling
			LVS-1 0.155 0.124 2271 0.223 0.221 2182

(0.032) (0.019) (0.030) (0.021)
			LVS-2 0.225 0.236 1400 0.292 0.161 1365

(0.035) (0.030) (0.033) (0.029)
			BASE 0.258 0.196 541

(0.047) (0.052)
			NEPS-1 0.208 0.159 2600 0.223 0.153 2357

(0.019) (0.013) (0.022) (0.015)
			NEPS-2 0.202 0.154 3039 0.256 0.159 2792

(0.017) (0.013) (0.020) (0.013)

Panel	B:	Schooling	w/	vocational
			LVS-1 0.177 0.130 1841 0.272 0.221 1692

(0.033) (0.019) (0.034) (0.021)
			NEPS-1 0.207 0.130 2620 0.189 0.161 2376

(0.022) (0.013) (0.026) (0.015)

Panel	C:	Occupational	Prestige
			LVS-1 0.082 0.054 1088 0.250 0.146 2261

(0.037) (0.017) (0.030) (0.016)
			BASE 0.257 0.180 542

(0.049) (0.041)

Table	13:	Status	Correlation	Between	First	and	Third	Generation

Note:		Estimates	of	the	Pearson	correlation	coefficient	between	G1	and	G3.	Balanced	
sample,	using	complete	lineages	in	which	the	respective	outcome	is	observed	for	
individuals	in	all	three	generations.	Bootstrapped	standard	errors	clustered	on	family	
level	in	parentheses.

a	Only	929	observations	for	G2-G1	regression.

Matrilineal	Lineages Patrilineal	Lineages

-

-

- -

--

Note: Estimates of the Pearson correlation coefficient between G1 and G3. Balanced sample, using complete lineages in which the respective outcome is
observed for individuals in all three generations. Bootstrapped standard errors clustered on family level in parentheses.

50



F Additional Evidence on the Grandparent Coefficient

Table 14: Variation in the Grandparent Coefficient by Grandparent Survival, Extended SampleTable	14:	Variation	in	the	Grandparent	Coefficient	by	Grandparent	Survival,	Extended	Sample
Panel	A

(1) (2) (3) (4) (5)
Indicator	grandfather	death At	birth B/w	1939-45 B/w	1939-45 War	death War	death
Conditional	on	absence/death	during	WWII? No No Yes Yes Yes
Samples LVS-1/-2/-3 LVS-1/-2/-3 LVS-2/-3 LVS-2/-3 LVS-2/-3
Schooling
			Grandfather 0.172*** 0.166*** 0.174*** 0.171*** 0.146***

(0.037) (0.032) (0.057) (0.057) (0.036)
				×	Grandfather	death -0.012 0.029 -0.001 -0.038 0.071

(0.063) (0.098) (0.139) (0.156) (0.122)
			Father 0.479*** 0.480*** 0.438*** 0.425*** 0.389***

(0.029) (0.026) (0.059) (0.060) (0.060)
				×	Grandfather	death -0.006 -0.019 0.093 0.080 0.057

(0.048) (0.072) (0.103) (0.133) (0.163)
Grandfather	death 0.251 -0.035 -0.999 -0.567 -1.406

(0.492) (0.728) (1.052) (1.427) (1.258)
Panel	B

(1) (2) (3) (4) (5)
Indicator	grandfather	death
			At	birth 0.221***

(0.067)
			B/w	1939-45 0.128 -0.089

(0.087) (0.139)
			War	death -0.041 -0.225

(0.173) (0.326)
#	obs. 4269 4279 1113 989 956

Schooling	Child	(G3)

Schooling	Grandfather	(G1)

Note:		Panel	A	reports	estimates	from	a	regression	of	child	schooling	on	father	and	grandfather	schooling.	All	regressions	in	Panel	A	include	a	dummy	for	grandfather	death,	interaction	terms	
between	grandfather	death	and	father/grandfather	schooling,	a	quadratic	polynomial	in	the	(hypothetical)	age	of	the	grandfather	in	1988,	and	dummies	for	the	index	cohort	considered	(LVS-
1,	LVS-2,	LVS-3).	Panel	B	reports	estimate	from	a	regression	of	grandfather	schooling	on	an	indicator	of	grandfather	death	and	a	quadratic	polynomial	in	the	(hypothetical)	age	of	the	
grandfather	in	1988.	As	an	indicator	for	grandfather	death,	model	(1)	in	Panels	A	and	B	uses	a		dummy	indicating	whether	the	grandfather	was	already	dead	when	his	grandchild	was	born,	
regressions	(2)	and	(3)		a	dummy	indicating	whether	the	grandfather	died	between	1939	and	1945,	and	regressions	in	(4)	and	(5)		a	dummy	indicating	whether	the	grandfather	was	killed	
during	World	War	II	or	was	missing	in	action	since	then.	Regressions	(3)	to	(5)	restrict	the	sample	to	observations	from	G3	whose	grandfather	was	absent	because	of	World	War	II	or	died	in	
the	war.		Regression	(5)	uses	schooling	with	vocational	training	instead	of	just	schooling	as	the	education	variable	of	the	grandfather.	Standard	errors	are	clustered	on	family	level.

Notes: Panel A reports estimates from a regression of child schooling on father and grandfather schooling. All regressions in Panel A include a dummy
for grandfather death, interaction terms between grandfather death and father/grandfather schooling, a quadratic polynomial in the (hypothetical) age of the
grandfather in 1988, and dummies for the index cohort considered (LVS-1, LVS-2, LVS-3). Panel B reports estimates from a regression of grandfather
schooling on an indicator of grandfather death and a quadratic polynomial in the (hypothetical) age of the grandfather in 1988, and dummies for the index
cohort considered (LVS-1, LVS-2, LVS-3). As an indicator for grandfather death, model (1) uses a dummy indicating whether the grandfather was already dead
when his grandchild was born, regressions (2) and (3) a dummy indicating whether the grandfather died between 1939 and 1945, and regressions in (4) and (5)
a dummy indicating whether the grandfather was killed during World War II or was missing in action since then. Regressions (3) to (5) restrict the sample to
observations from G3 whose grandfather was absent because of World War II or died in the war. Regression (5) uses schooling with vocational training instead
of just schooling as the education variable of the grandfather. Standard errors clustered on family level in parentheses, *** p<0.01.
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